精英家教网 > 初中数学 > 题目详情

【题目】如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是cm.

【答案】10
【解析】解:如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm. 连接OC,交AB于D点.连接OA.
∵尺的对边平行,光盘与外边缘相切,
∴OC⊥AB.
∴AD=4cm.
设半径为Rcm,则R2=42+(R﹣2)2
解得R=5,
∴该光盘的直径是10cm.
所以答案是:10

【考点精析】本题主要考查了勾股定理的概念和垂径定理的相关知识点,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在下列条件:①∠A+∠B=∠C,②∠A∶∠B∶∠C=3∶4∶5,③∠C=∠A-∠B, ④a∶b∶c=3∶4∶5 中,能确定△ABC是直角三角形的条件有( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果二次根式 能够合并,能否由此确定a=1?若能,请说明理由;不能,请举一个反例说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠ACB=90°,AC=BC,直线,MN经过点C,且ADMN于点D,BEMN于点E.

(1)当直线MN绕点C旋转到如图1的位置时,求证:DE=AD+BE;

(2)当直线MN绕点C旋转到如图2的位置时,求证:DE=AD﹣BE;

(3)当直线MN绕点C旋转到如图3的位置时,线段DE、AD、BE之间又有什么样的数量关系?请你直接写出这个数量关系,不要证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若不等式组 ,的整数解是关于x的方程2x-4=ax的根,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).

(1)请按下列要求画图:
①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1 , 画出△A1B1C1
②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2
(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,弧AE等于弧AB,BE分别交AD、AC于点F、G.
(1)判断△FAG的形状,并说明理由;
(2)若点E和点A在BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变,(1)中的结论还成立吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.
(1)求该抛物线的解析式;
(2)求该抛物线的对称轴以及顶点坐标;
(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足SPAB=8,并求出此时P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知OABEOF都是等腰直角三角形AOB=900EOF=900连结AEBF

求证:(1AE=BF;(2AEBF

查看答案和解析>>

同步练习册答案