【题目】如图,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,弧AE等于弧AB,BE分别交AD、AC于点F、G.
(1)判断△FAG的形状,并说明理由;
(2)若点E和点A在BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变,(1)中的结论还成立吗?请说明理由.
【答案】
(1)解:等腰三角形;
∵BC为直径,AD⊥BC,
∴∠BAD+∠CAD=90°,∠C+∠CAD=90°,
∴∠BAD=∠C,
∵ ,
∴∠ABE=∠C,
∴∠ABE=∠BAD,
∴AF=BF,
∵∠BAD+∠CAD=90°,∠ABE+∠AGB=90°,
∴∠DAC=∠AGB,
∴FA=FG,
∴△FAG是等腰三角形
(2)解:成立;
∵BC为直径,AD⊥BC,
∴∠BAD+∠CAD=90°,∠C+∠CAD=90°,
∴∠BAD=∠C,
∵ ,
∴∠ABE=∠C,
∴∠ABE=∠BAD,
∴AF=BF,
∵∠BAD+∠CAD=90°,∠ABE+∠AGB=90°,
∴∠DAC=∠AGB,
∴FA=FG,
∴△FAG是等腰三角形
【解析】(1)首先根据圆周角定理及垂直的定义得到∠BAD+∠CAD=90°,∠C+∠CAD=90°,从而得到∠BAD=∠C,然后利用等弧对等角等知识得到AF=BF,从而证得FA=FG,判定等腰三角形;(2)成立,证明方法同(1).
【考点精析】利用垂径定理和圆周角定理对题目进行判断即可得到答案,需要熟知垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半.
科目:初中数学 来源: 题型:
【题目】已知:如图,∠A=90°,BC∥AD,AB=6cm,点P从A出发沿射线AD运动,速度是每秒1cm,点R从点B出发沿射线BC运动,速度是每秒2cm,点Q在点P的右侧,且PQ=10cm,时间为t秒;
求:(1)△PQR的面积;
(2)当t=1秒时,求PR的长;
(3)当t为何值时,△PQR是等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题,真命题是( )
A.如图,如果OP平分∠AOB,那么,PA=PB
B.三角形的一个外角大于它的一个内角
C.如果两条直线没有公共点,那么这两条直线互相平行
D.有一组邻边相等的矩形是正方形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.
(1)怎样围才能使矩形场地的面积为750m2?
(2)能否使所围矩形场地的面积为810m2 , 为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,把点P(﹣5,3)向右平移8个单位得到点P1 , 再将点P1绕原点旋转90°得到点P2 , 则点P2的坐标是( )
A.(3,﹣3)
B.(﹣3,3)
C.(3,3)或(﹣3,﹣3)
D.(3,﹣3)或(﹣3,3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40cm,这个三角形的面积S(单位:cm2)随x(单位:cm)的变化而变化.
(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)当x是多少时,这个三角形面积S最大?最大面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2+bx+c的图象过点A(﹣3,0)和点B(1,0),且与y轴交于点C,D点在抛物线上且横坐标是﹣2.
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com