精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=x2+bx+c的图象过点A(﹣3,0)和点B(1,0),且与y轴交于点C,D点在抛物线上且横坐标是﹣2.

(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值.

【答案】
(1)

解:将A(﹣3,0),B(1,0)代入y=x2+bx+c,

解得

∴y=x2+2x﹣3


(2)

解:∵y=x2+2x﹣3=(x+1)2﹣4

∴对称轴x=﹣1,

又∵A,B关于对称轴对称,

∴连接BD与对称轴的交点即为所求P点.

过D作DF⊥x轴于F.将x=﹣2代入y=x2+2x﹣3,

则y=4﹣4﹣3=﹣3,

∴D(﹣2,﹣3)

∴DF=3,BF=1﹣(﹣2)=3

Rt△BDF中,BD=

∵PA=PB,

∴PA+PD=BD=

故PA+PD的最小值为


【解析】(1)把A(﹣3,0)和点B(1,0),代入y=x2+bx+c,建立关于b,c的二元一次方程组,求出b,c即可;(2)先求出抛物线的对称轴,又因为A,B关于对称轴对称,所以连接BD与对称轴的交点即为所求P点.
【考点精析】根据题目的已知条件,利用二次函数的图象和二次函数的性质的相关知识可以得到问题的答案,需要掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,弧AE等于弧AB,BE分别交AD、AC于点F、G.
(1)判断△FAG的形状,并说明理由;
(2)若点E和点A在BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变,(1)中的结论还成立吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点AB分别在x轴与y轴上,已知OA=6,OB=10.点Dy轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段ACCB的方向运动,当点P与点B重合时停止运动,运动时间为t秒.

(1)当点P经过点C时,求直线DP的函数解析式;

(2)如图②,把长方形沿着OP折叠,点B的对应点B′恰好落在AC边上,求点P的坐标.

(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知OABEOF都是等腰直角三角形AOB=900EOF=900连结AEBF

求证:(1AE=BF;(2AEBF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】威远人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.

(1)求甲种牛奶、乙种牛奶的进价分别是多少元?

(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,两种牛奶的总数不超过95件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)超过371元,请通过计算求出该商场购进甲、乙两种牛奶有哪几种方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2
(1)求y与x之间的函数关系式;
(2)若图案中三条彩条所占面积是图案面积的 ,求横、竖彩条的宽度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①2a+b=0;②a+b+c>0;③当﹣1<x<3时,y>0;④﹣a+c<0.其中正确的个数为(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=ax2+bx+2与x轴交于A,B两点,与y轴交于点C,AB=4,矩形OBDC的边CD=1,延长DC交抛物线于点E.

(1)求抛物线的解析式;
(2)如图2,点P是直线EO上方抛物线上的一个动点,过点P作y轴的平行线交直线EO于点G,作PH⊥EO,垂足为H.设PH的长为l,点P的横坐标为m,求l与m的函数关系式(不必写出m的取值范围),并求出l的最大值;

(3)如果点N是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C,点D为AP的中点,连结AC.求证:
(1)∠P=∠BAC
(2)直线CD是⊙O的切线.

查看答案和解析>>

同步练习册答案