精英家教网 > 初中数学 > 题目详情

【题目】如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①2a+b=0;②a+b+c>0;③当﹣1<x<3时,y>0;④﹣a+c<0.其中正确的个数为(
A.1
B.2
C.3
D.4

【答案】C
【解析】解:①∵二次函数y=ax2+bx+c(a≠0)的开口向下, ∴a<0,
∵函数与y轴的正半轴相交,
∴c>0,
∴﹣a+c>0,
故④错误;
②∵二次函数与x轴的交点的坐标为(﹣1,0),(3,0),
∴对称轴为x═1,即﹣=1,
∴b=﹣2a,即2a+b=0,
故①正确;
③∵函数的顶点在第一象限,
∴x=1时,y=a+b+c>0,
故②正确;
④∵二次函数与x轴的交点的坐标为(﹣1,0),(3,0),图象开口向下,
∴当﹣1<x<3时,y>0.
故③正确.
所以正确的个数为3个,
故选C.
根据函数的开口方向,对称轴以及与y轴的交点确定a,b,c的符号,从而判断④;根据对称轴的位置判断①;根据x=1时的纵坐标的位置判断②;根据二次函数图象落在x轴上方的部分对应的自变量x的取值,判断③.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,把点P(﹣5,3)向右平移8个单位得到点P1 , 再将点P1绕原点旋转90°得到点P2 , 则点P2的坐标是( )
A.(3,﹣3)
B.(﹣3,3)
C.(3,3)或(﹣3,﹣3)
D.(3,﹣3)或(﹣3,3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算 ﹣(π﹣3)0+(﹣ 1 +| ﹣2|.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+bx+c的图象过点A(﹣3,0)和点B(1,0),且与y轴交于点C,D点在抛物线上且横坐标是﹣2.

(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),先将△ABC沿一确定方向平移得到△A1B1C1 , 点B的对应点B1的坐标是(1,2),再将△A1B1C1绕原点O顺时针旋转90°得到△A2B2C2 , 点A1的对应点为点A2

(1)画出△A1B1C1
(2)画出△A2B2C2
(3)求:点A到A2的直线距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中秋节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法.对水库中某种鲜鱼进行捕捞销售,第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如下:

鲜鱼销售单价(元/kg)

20

单位捕捞成本(元/kg)

5﹣

捕捞量(kg)

950﹣10x

假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出.
(1)求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)
(2)在第几天y取得最大值,最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),∠ABD=90°,下列结论:①sinC>sinD;②cosC>cosD;③tanC>tanD,正确的结论为(
A.①②
B.②③
C.①②③
D.①③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,小明在地面D处观测旗杆顶端B的仰角为30°,然后他正对建筑物的方向前进了20米到达地面的E处,又测得旗杆顶端B的仰角为60°,已知建筑物的高度AC=12m,求旗杆AB的高度(结果精确到0.1米).参考数据: ≈1.73, ≈1.41.

查看答案和解析>>

同步练习册答案