精英家教网 > 初中数学 > 题目详情

【题目】在△ABC中,∠ACB=90°,AC=BC,直线,MN经过点C,且ADMN于点D,BEMN于点E.

(1)当直线MN绕点C旋转到如图1的位置时,求证:DE=AD+BE;

(2)当直线MN绕点C旋转到如图2的位置时,求证:DE=AD﹣BE;

(3)当直线MN绕点C旋转到如图3的位置时,线段DE、AD、BE之间又有什么样的数量关系?请你直接写出这个数量关系,不要证明.

【答案】(1)证明见解析;(2)证明见解析;(3)DE=BE﹣AD.

【解析】

(1)利用垂直的定义得∠ADC=∠CEB=90°,则根据互余得∠DAC+∠ACD=90°,再根据等角的余角相等得到∠DAC=∠BCE,然后根据“AAS”可判断△ADC≌△CEB,所以CD=BE,AD=CE,再利用等量代换得到DE=AD+BE;(2)与(1)一样可证明△ADC≌△CEB,则CD=BE,AD=CE,于是有DE=CE﹣CD=AD﹣BE;(3)与(1)一样可证明△ADC≌△CEB,则CD=BE,AD=CE,于是有DE=CD﹣CE=BE﹣AD.

(1)ADMN,BEMN,

∴∠ADC=CEB=90°,

∴∠DAC+ACD=90°,

∵∠ACB=90°,

∴∠BCE+ACD=90°,

∴∠DAC=BCE,

在△ADC和△CEB,

∴△ADC≌△CEB(AAS),

CD=BE,AD=CE,

DE=CE+CD=AD+BE;

(2)(1)一样可证明△ADC≌△CEB,

CD=BE,AD=CE,

DE=CE﹣CD=AD﹣BE;

(3)DE=BE﹣AD.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在等边三角形ABC中,点DE分别在边BCAC上,且DE∥AB,过点EEF⊥DE,交BC的延长线于点F.

1)求∠F的度数;

2)若CD=2,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC,∠ACB=90,DBC延长线上一点,EBD的垂直平分线与AB的交点,DEAC于点F,求证:EA=EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知BD△ABC的角平分线,请按如下要求操作解答:

(1)过点DDE∥BCABE,若∠A=68°,∠AED=42°,求∠BDC的度数.

(2)△ABC的角平分线CFBD于点M,∠A=60°,求∠CMD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题,真命题是(
A.如图,如果OP平分∠AOB,那么,PA=PB
B.三角形的一个外角大于它的一个内角
C.如果两条直线没有公共点,那么这两条直线互相平行
D.有一组邻边相等的矩形是正方形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,四边形EFGH是由矩形ABCD的外角平分线围成的. 求证:四边形EFGH是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用适当的方法解方程:x2﹣6x+9=(5﹣2x)2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次数学活动中,黑板上画着如图所示的图形,活动前老师在准备的四张纸片上分别写有如下四个等式中的一个等式: ①AB=DC;②∠ABE=∠DCE;③AE=DE;④∠A=∠D
小明同学闭上眼睛从四张纸片中随机抽取一张,再从剩下的纸片中随机抽取另一张.请结合图形解答下列两个问题:

(1)当抽得①和②时,用①,②作为条件能判定△BEC是等腰三角形吗?说说你的理由;
(2)请你用树状图或表格表示抽取两张纸片上的等式所有可能出现的结果(用序号表示),并求以已经抽取的两张纸片上的等式为条件,使△BEC不能构成等腰三角形的概率.

查看答案和解析>>

同步练习册答案