精英家教网 > 初中数学 > 题目详情

【题目】如果∠α和∠β互补,且∠α<∠β,下列表达式:①90°﹣α;②∠β﹣90°;β+∠α);β﹣α)中,等于∠α的余角的式子有(  )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】根据∠α和∠β互补,且∠α<β,可得∠β=180°﹣α,α的余角是90°﹣α,可判断①β﹣90°=180°﹣α﹣90°=90°﹣α,可判断②β+α)=(180°﹣α+α)=90°,可判断③β﹣α)=(180°﹣α﹣α)=90°﹣α,可判断④.

∵∠α和∠β互补,且∠α<β,

∴∠β=180°﹣α,

α的余角是90°﹣α,

β﹣90°=180°﹣α﹣90°=90°﹣α,

β+α)=(180°﹣α+α)=90°,

β﹣α)=(180°﹣α﹣α)=90°﹣α,

即①②④,3个,

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下面材料: 如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2= 交于A(1,3)和B(﹣3,﹣1)两点.

观察图象可知:
①当x=﹣3或1时,y1=y2
②当﹣3<x<0或x>1时,y1>y2 , 即通过观察函数的图象,可以得到不等式ax+b> 的解集.
有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.
某同学根据学习以上知识的经验,对求不等式x3+4x2﹣x﹣4>0的解集进行了探究.
下面是他的探究过程,请将(1)、(2)、(3)补充完整:
将不等式按条件进行转化:
当x=0时,原不等式不成立;
当x>0时,原不等式可以转化为x2+4x﹣1>
当x<0时,原不等式可以转化为x2+4x﹣1<
(1)构造函数,画出图象 设y3=x2+4x﹣1,y4= ,在同一坐标系中分别画出这两个函数的图象.
双曲线y4= 如图2所示,请在此坐标系中画出抛物线y3=x2+4x﹣1;(不用列表)

(2)确定两个函数图象公共点的横坐标 观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为
(3)借助图象,写出解集 结合讨论结果,观察两个函数的图象可知:不等式x3+4x2﹣x﹣4>0的解集为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校为了丰富学生课余活动开展了一次“校园歌手大奖赛”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:

成绩(分)

9.40

9.50

9.60

9.70

9.80

9.90

人数

2

3

5

4

3

1

则入围同学决赛成绩的中位数和众数分别是( )
A.9.70,9.60
B.9.60,9.60
C.9.60,9.70
D.9.65,9.60

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.
(1)求证:BE=DF;
(2)求证:AF∥CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(xn+0.5n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简 [x]+x+[x)的结果是__________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O,D,E三点在同一直线上,∠AOB=90°.

(1)图中∠AOD的补角是_____,∠AOC的余角是_____;

(2)如果OB平分∠COE,∠AOC=35°,请计算出∠BOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠BAP与∠APD互补,∠1=2,试说明:∠E=F.请在下面的括号中填上理由.

解:∵∠BAP与∠APD互补(      ),

ABCD(             ),

∴∠BAP=APC(          ).

又∵∠1=2(      ),

∴∠BAP-1=APC-2(     ),

即∠3=4,

AEPF(             ),

∴∠E=F(             ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰ABC中,ABACBDCE分别是边ACAB上的中线,BDCE相交于点O,点MN分别为线段BOCO的中点.求证:四边形EDNM是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AC为对角线,AC=BC=5,AB=6,AE是△ABC的中线,求△ACE的面积.

查看答案和解析>>

同步练习册答案