精英家教网 > 初中数学 > 题目详情

【题目】如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=4.

(1)求证:PC是⊙O的切线.

(2)求tan∠CAB的值.

【答案】(1)见解析;(2)tanCAB=.

【解析】

1)可以证明OC2+PC2=OP2得△OCP是直角三角形,即OCPCPCO的切线;

2AB是直径,得∠ACB=90°,通过角的关系可以证明△PBC∽△PCA,进而,得出tanACB=

(1)如图,连接OC、BC,

∵⊙O的半径为3,PB=2,

OC=OB=3,OP=OB+PB=5,

PC=4,

OC2+PC2=OP2

∴△OCP是直角三角形

OCPC

PC是⊙O的切线.

(2)AB是直径,

∴∠ACB=90°

∴∠ACO+∠OCB=90°.

OCPC

∴∠BCP+∠OCB=90°

∴∠BCP=ACO.

OA=OC

∴∠A=ACO

∴∠A=BCP.

在△PBC和△PCA中:

BCP=A,P=P

∴△PBC∽△PCA,

===

tanCAB==

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知ABC为等边三角形,P是直线AC上一点,ADBPD,以AD为边作等边ADE(D,E在直线AC异侧).

(1)如图1,若点P在边AC上,连CD,且∠BDC=150°,则= ;(直接写结果)

(2)如图2,若点PAC延长线上,DEBCF求证:BF=CF;

(3)在图2中,若∠PBC=15°,AB=,请直接写出CP的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】黄河,既是一条源远流长、波澜壮阔的自然河,又是一条孕育中华民族灿烂文明的母亲河.数学课外实践活动中,小林和同学们在黄河南岸小路上的AB两点处,用测角仪分别对北岸的观景亭D进行测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=200米,求观景亭D到小路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴交于两点(点在点的左侧),与轴交于点,且的平分线轴于点,过点且垂直于的直线轴于点,点轴下方抛物线上的一个动点,过点轴,垂足为,交直线于点

(1)求抛物线的解析式;

(2)设点的横坐标为,当时,求的值;

(3)当直线为抛物线的对称轴时,以点为圆心,为半径作,点上的一个动点,求的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.

1)求平均每次下调的百分率.

2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:9.8折销售;不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形ABCD,AB=6,BC=8.P在矩形ABCD的内部,点E在边BC满足PBE∽△DBC,APD是等腰三角形PE的长为数___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=﹣x2+2x+m的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BE平分∠ABCAC于点E,过点EED∥BCAB于点D

1)求证:AEBC=BDAC

2)如果SADE=3SBDE=2DE=6,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(12分)阅读资料:

如图1,在平面之间坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B两点间的距离为AB=

我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xoy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x﹣0|2+|y﹣0|2,当O的半径为r时,O的方程可写为:x2+y2=r2

问题拓展:如果圆心坐标为P(a,b),半径为r,那么P的方程可以写为

综合应用:

如图3,P与x轴相切于原点O,P点坐标为(0,6),A是P上一点,连接OA,使tanPOA=,作PDOA,垂足为D,延长PD交x轴于点B,连接AB

证明AB是P的切点;

是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的O的方程;若不存在,说明理由

查看答案和解析>>

同步练习册答案