精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线轴交于两点(点在点的左侧),与轴交于点,且的平分线轴于点,过点且垂直于的直线轴于点,点轴下方抛物线上的一个动点,过点轴,垂足为,交直线于点

(1)求抛物线的解析式;

(2)设点的横坐标为,当时,求的值;

(3)当直线为抛物线的对称轴时,以点为圆心,为半径作,点上的一个动点,求的最小值.

【答案】1yx2x3;(2;(3

【解析】

对于(1),结合已知先求出点B和点C的坐标,再利用待定系数法求解即可;

对于(2),在RtOAC中,利用三角函数的知识求出∠OAC的度数,再利用角平分线的定义求出∠OAD的度数,进而得到点D的坐标;接下来求出直线AD的解析式,表示出点PHF的坐标,再利用两点间的距离公式可完成解答;对于(3),首先求出⊙H的半径,在HA上取一点K,使得HK=14,此时K-);然后由HQ2=HK·HA,得到△QHK∽△AHQ,再利用相似三角形的性质求出KQ=AQ,进而可得当EQK共线时,AQ+EQ的值最小,据此解答.

1)由题意A0),B(﹣30),C0,﹣3),设抛物线的解析式为yax+3)(x),把C0,﹣3代入得到a,∴抛物线的解析式为yx2x3

2)在RtAOC中,tanOAC,∴∠OAC60°.

AD平分∠OAC,∴∠OAD30°,∴ODOAtan30°=1,∴D0,﹣1),∴直线AD的解析式为yx1,由题意Pmm2m3),Hmm1),Fm0).

FHPH,∴1m1﹣(m2m3

解得m(舍弃),∴当FHHP时,m的值为

3)如图,∵PF是对称轴,∴F0),H,﹣2).

AHAE,∴∠EAO60°,∴EOOA3,∴E03).

C0,﹣3),∴HC2AH2FH4,∴QHCH1,在HA上取一点K,使得HK,此时K).

HQ21HKHA1,∴HQ2HKHA,∴

∵∠QHK=∠AHQ,∴△QHK∽△AHQ,∴,∴KQAQ,∴AQ+QEKQ+EQ,∴当EQK共线时,AQ+QE的值最小,最小值

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)如图1,已知EK垂直平分BC,垂足为D,ABEK相交于点F,连接CF.求证:∠AFE=CFD.

(2)如图2,在RtGMN中,∠M=90°,PMN的中点.

①用直尺和圆规在GN边上求作点Q,使得∠GQM=PQN(保留作图痕迹,不要求写作法);

②在①的条件下,如果∠G=60°,那么QGN的中点吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在□ABCD中,O是AC、BD的交点,过点O 与AC垂直的直线交边AD于点E,若□ABCD的周长为22cm,则△CDE的周长为( ).

A. 8cm B. 10cm C. 11cm D. 12cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,每个小正方形的边长均为1,则下列A、B、C、D四个图中的三角形(阴影部分)与△EFG相似的是

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠MAN=120°,AC平分∠MAN,点B、D分别在AN、AM上.

(1)如图1,若∠ABC=∠ADC=90°,请你探索线段AD、AB、AC之间的数量关系,并证明之;

(2)如图2,若∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1,在正方形ABCD中,EAB上一点,FAD延长线上一点,且DFBE.求证:CECF

2)如图2,在正方形ABCD中,EAB上一点,GAD上一点,如果∠GCE45°,请你利用(1)的结论证明:GEBEGD

3)运用(1)(2)解答中所积累的经验和知识,完成下题:

如图3,在直角梯形ABCD中,AD∥BCBCAD),∠B90°ABBCEAB上一点,且∠DCE45°BE4DE="10," 求直角梯形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=4.

(1)求证:PC是⊙O的切线.

(2)求tan∠CAB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点DEG上运动,则△CDF周长的最小值为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形ABCO中,O00),C03),Aa0),(a≥3),以A为旋转中心顺时针旋转矩形ABCO得到矩形AFED

1)如图1,当点D落在边BC上时,求BD的长(用a的式子表示);

2)如图2,当a3时,矩形AFED的对角线AE交矩形ABCO的边BC于点G,连结CE,若CGE是等腰三角形,求直线BE的解析式;

3)如图3,矩形ABCO的对称中心为点P,当PB关于AD对称时,求出a的值,此时在x轴、y轴上是否分别存在MN使得四边形EFMN为平行四边形,若存在直接写出MN坐标,不存在说明理由.

查看答案和解析>>

同步练习册答案