【题目】如图,抛物线与轴交于,,两点(点在点的左侧),与轴交于点,且,的平分线交轴于点,过点且垂直于的直线交轴于点,点是轴下方抛物线上的一个动点,过点作轴,垂足为,交直线于点.
(1)求抛物线的解析式;
(2)设点的横坐标为,当时,求的值;
(3)当直线为抛物线的对称轴时,以点为圆心,为半径作,点为上的一个动点,求的最小值.
【答案】(1)yx2x﹣3;(2);(3).
【解析】
对于(1),结合已知先求出点B和点C的坐标,再利用待定系数法求解即可;
对于(2),在Rt△OAC中,利用三角函数的知识求出∠OAC的度数,再利用角平分线的定义求出∠OAD的度数,进而得到点D的坐标;接下来求出直线AD的解析式,表示出点P,H,F的坐标,再利用两点间的距离公式可完成解答;对于(3),首先求出⊙H的半径,在HA上取一点K,使得HK=14,此时K(-,);然后由HQ2=HK·HA,得到△QHK∽△AHQ,再利用相似三角形的性质求出KQ=AQ,进而可得当E、Q、K共线时,AQ+EQ的值最小,据此解答.
(1)由题意A(,0),B(﹣3,0),C(0,﹣3),设抛物线的解析式为y=a(x+3)(x),把C(0,﹣3)代入得到a,∴抛物线的解析式为yx2x﹣3.
(2)在Rt△AOC中,tan∠OAC,∴∠OAC=60°.
∵AD平分∠OAC,∴∠OAD=30°,∴OD=OAtan30°=1,∴D(0,﹣1),∴直线AD的解析式为yx﹣1,由题意P(m,m2m﹣3),H(m,m﹣1),F(m,0).
∵FH=PH,∴1m﹣1﹣(m2m﹣3)
解得m或(舍弃),∴当FH=HP时,m的值为.
(3)如图,∵PF是对称轴,∴F(,0),H(,﹣2).
∵AH⊥AE,∴∠EAO=60°,∴EOOA=3,∴E(0,3).
∵C(0,﹣3),∴HC2,AH=2FH=4,∴QHCH=1,在HA上取一点K,使得HK,此时K().
∵HQ2=1,HKHA=1,∴HQ2=HKHA,∴.
∵∠QHK=∠AHQ,∴△QHK∽△AHQ,∴,∴KQAQ,∴AQ+QE=KQ+EQ,∴当E、Q、K共线时,AQ+QE的值最小,最小值.
科目:初中数学 来源: 题型:
【题目】(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.
(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.
①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);
②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在□ABCD中,O是AC、BD的交点,过点O 与AC垂直的直线交边AD于点E,若□ABCD的周长为22cm,则△CDE的周长为( ).
A. 8cm B. 10cm C. 11cm D. 12cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知∠MAN=120°,AC平分∠MAN,点B、D分别在AN、AM上.
(1)如图1,若∠ABC=∠ADC=90°,请你探索线段AD、AB、AC之间的数量关系,并证明之;
(2)如图2,若∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;
(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.
(3)运用(1)(2)解答中所积累的经验和知识,完成下题:
如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE="10," 求直角梯形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=4.
(1)求证:PC是⊙O的切线.
(2)求tan∠CAB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形ABCO中,O(0,0),C(0,3),A(a,0),(a≥3),以A为旋转中心顺时针旋转矩形ABCO得到矩形AFED.
(1)如图1,当点D落在边BC上时,求BD的长(用a的式子表示);
(2)如图2,当a=3时,矩形AFED的对角线AE交矩形ABCO的边BC于点G,连结CE,若△CGE是等腰三角形,求直线BE的解析式;
(3)如图3,矩形ABCO的对称中心为点P,当P,B关于AD对称时,求出a的值,此时在x轴、y轴上是否分别存在M,N使得四边形EFMN为平行四边形,若存在直接写出M,N坐标,不存在说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com