【题目】在等边△ABC中,E为BC边上一点,G为BC延长线上一点,过点E作∠AEM=60°,交∠ACG的平分线于点M.
![]()
(1)如图1,当点E在BC边的中点位置时,求证:AE=EM;
(2)如图2,当点E在BC边的任意位置时,(1)中的结论是否成立?请说明理由.
【答案】(1)见解析;(2)(1)中的结论成立,理由见解析.
【解析】
(1)取AB的中点N,连接EN,可证明△ANE≌△ECM,可证得AE=EM;
(2)在AB上取点H,使BH=BE,根据等边三角形的证明△AHE≌△ECM即可求解.
(1)证明:取AB的中点N,连接EN,
![]()
∵△ABC为等边三角形,E,N为中点,
∴AE⊥BC,且AE平分∠BAC,
∴AN=NE=EC,∠NAE=∠NEA=30°,∴∠ANE=120°,
∵∠AEM=60°,∴∠MEC=30°,∴∠NAE=∠CEM,
∵CM平分∠ACG,∴∠ACM=60°,∴∠ECM=∠ANE=120°,
在△ANE和△ECM中,
,∴△ANE≌△ECM(ASA),
∴AE=EM;
(2)在AB上取点H,使BH=BE,
![]()
∵△ABC是等边三角形,∴AB=BC,∠B=60°.
∵BH=BE,∴AH=CE.
∴△BHE是等边三角形,∴∠BHE=60°.∴∠AHE=120°.
∵∠ECM=120°.∴∠AHE=∠ECM.
∵∠AEM+∠MEC=∠ABC+∠EAH,∴∠EAH=∠MEC
在△AHE和△ECM中
,∴△AHE≌△ECM(ASA).
∴AE=EM.
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想
图1中,线段PM与PN的数量关系是 ,位置关系是 ;
(2)探究证明
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸
把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:
阅读时间 (小时) | 2 | 2.5 | 3 | 3.5 | 4 |
学生人数(名) | 1 | 2 | 8 | 6 | 3 |
则关于这20名学生阅读小时数的说法正确的是( )
A. 众数是8 B. 中位数是3 C. 平均数是3 D. 方差是0.34
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC与△DEC是两个大小不同的等腰直角三角形.
(1)如图①所示,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由;
(2)如图②所示,连接DB,将线段DB绕D点顺时针旋转90°到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.
(1)求证:△BDE≌△CDF.
(2)当AD⊥BC,AE=2,CF=4时,求AC的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知
是正方形
内一点,以点
为旋转中心,将
按顺时针方向旋转使点
与点
重合,这时
点旋转到
点.
![]()
设
的长为
,
的长为
,在图中用阴影标出
旋转到
的过程中,边
所扫过区域的面积,并用含
、
的式子表示它________;
若
,
,
,连接
,试猜想
的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于点A(
,
),B(4,m),点P是线段AB上异于A,B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的解析式;
(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一块含30°角的直角三角板OAB的直角边BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把这两块三角板放置在平面直角坐标系中,且OB=3
.
(1)若某反比例函数的图象的一个分支恰好经过点A,求这个反比例函数的解析式;
(2)若把含30°角的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好落在x轴上,点A落在点A′处,试求图中阴影部分的面积.(结果保留π)
![]()
【答案】(1)反比例函数的解析式为y=
;(2)S阴影=6π-
.
【解析】分析:(1)根据tan30°=
,求出AB,进而求出OA,得出A的坐标,设过A的双曲线的解析式是y=
,把A的坐标代入求出即可;(2)求出∠AOA′,根据扇形的面积公式求出扇形AOA′的面积,求出OD、DC长,求出△ODC的面积,相减即可求出答案.
本题解析:
(1)在Rt△OBA中,∠AOB=30°,OB=3
,
∴AB=OB·tan 30°=3.
∴点A的坐标为(3,3
).
设反比例函数的解析式为y=
(k≠0),
∴3
=
,∴k=9
,则这个反比例函数的解析式为y=
.
(2)在Rt△OBA中,∠AOB=30°,AB=3,
sin ∠AOB=
,即sin 30°=
,
∴OA=6.
由题意得:∠AOC=60°,S扇形AOA′=
=6π.
在Rt△OCD中,∠DOC=45°,OC=OB=3
,
∴OD=OC·cos 45°=3
×
=
.
∴S△ODC=
OD2=![]()
=
.
∴S阴影=S扇形AOA′-S△ODC=6π-
.
点睛:本题考查了勾股定理、待定系数法求函数解析式、特殊角的三角函数值、扇形的面积及等腰三角形的性质,本题属于中档题,难度不大,将不规则的图形的面积表示成多个规则图形的面积之和是解答本题的关键.
【题型】解答题
【结束】
26
【题目】矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.
(1)如图①,已知折痕与边BC交于点O,连接AP,OP,OA.
① 求证:△OCP∽△PDA;
② 若△OCP与△PDA的面积比为1:4,求边AB的长.
(2)如图②,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P,A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M,N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com