【题目】已知△ABC与△DEC是两个大小不同的等腰直角三角形.
(1)如图①所示,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由;
(2)如图②所示,连接DB,将线段DB绕D点顺时针旋转90°到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.
【答案】(1)AE=DB,AE⊥DB;(2)DE=AF,DE⊥AF.
【解析】试题分析:(1)根据等腰直角三角形的性质、全等三角形的判定定理证明Rt△BCD≌Rt△ACE,根据全等三角形的性质解答;
(2)证明△EBD≌△ADF,根据全等三角形的性质证明即可.
试题解析:解:(1)AE=DB,AE⊥DB.证明如下:
∵△ABC与△DEC是等腰直角三角形,∴AC=BC,EC=DC,在Rt△BCD和Rt△ACE中,∵AC=BC,∠ACE=∠BCD,CE=CD,∴Rt△BCD≌Rt△ACE,∴AE=BD,∠AEC=∠BDC,∵∠BCD=90°,∴∠DHE=90°,∴AE⊥DB;
(2)DE=AF,DE⊥AF.证明如下:
设DE与AF交于N,由题意得,BE=AD,∵∠EBD=∠C+∠BDC=90°+∠BDC,∠ADF=∠BDF+∠BDC=90°+∠BDC,∴∠EBD=∠ADF,在△EBD和△ADF中,∵BE=AD,∠EBD=∠ADF,DE=DF,∴△EBD≌△ADF,∴DE=AF,∠E=∠FAD,∵∠E=45°,∠EDC=45°,∴∠FAD=45°,∴∠AND=90°,即DE⊥AF.
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE与AC交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,伴随点P的运动,矩形PEFG在射线AB上滑动;动点K从点P出发沿折线PE﹣﹣EF以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t秒(t>0).
(1)当t=1时,KE=_____,EN=_____;
(2)当t为何值时,△APM的面积与△MNE的面积相等?
(3)当点K到达点N时,求出t的值;
(4)当t为何值时,△PKB是直角三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,三角形ABC是边长为6的等边三角形,P是AC边上任意一点(与A、C两点不重合).Q是CB延长线上一点,且始终满足条件BQ=AP,过P作PE⊥AB于E,连接PQ交AB于D.
(1)如图(1)当∠CQP=30°时.求AP的长.
(2)如图(2),当P在任意位置时,求证:DE=AB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD中,AD∥BC,若∠DAB的平分线AE交CD于E,连接BE,且BE恰好平分∠ABC,则AB的长与AD+BC的大小关系是( )
A.AB>AD+BCB.AB<AD+BCC.AB=AD+BCD.无法确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角三角形ABC中,∠ACB=90°,∠B=36°,D是AB的中点,ED⊥AB交BC于E,连接CD,则∠CDE:∠ECD=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,平面直角坐标系中,A(0,4) ,B (b,0) (-4<b<0),将线段AB绕点A逆时针旋转90°得到线段AC,连接BC.
(1)如图1,直接写出C点的坐标: ;(用b表示)
(2)如图2,取线段BC的中点D,在x轴取一点E使∠DEB=45°,作CF⊥x轴于点F.
①求证:EF=OB;
②如图3,连接AE,作DH∥y轴交AE于点H,当OE=EF时,求线段DH的长度.
图1 图2 图3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,,,且满足.
(1)于,交轴于,求点坐标;
(2)过点作于,交于,若,求的长;
(3)为第一象限一点,交轴于.在上截取,为的中点,求的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:三角形ABC中,∠A=90,AB=AC,D为BC的中点,如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com