【题目】如图,三角形ABC是边长为6的等边三角形,P是AC边上任意一点(与A、C两点不重合).Q是CB延长线上一点,且始终满足条件BQ=AP,过P作PE⊥AB于E,连接PQ交AB于D.
(1)如图(1)当∠CQP=30°时.求AP的长.
(2)如图(2),当P在任意位置时,求证:DE=AB.
【答案】(1)2;(2)证明见解析.
【解析】
试题分析:(1)作PF∥BC交AB于点F.根据等边三角形的性质及直角三角形的性质就可以求出∠QPC=∠DPA=90°,得出AB=3AP而求出结论;
(2)作PF∥BC交AB于点F.根据等边三角形的性质就可以得出△PFD≌△QBD就有DF=DB,由等腰三角形的性质就可以得出AE=EF,由EF+FD=ED就可以得出结论.
试题解析:(1)如图(1),作PF∥BC交AB于点F,
∴∠AFP=∠ABC,∠APF=∠C.∠PFD=∠QBD,∠FPD=∠BQD.
∵△ABC是等边三角形,
∴∠A=∠ABC=∠C=60°.AB=BC=AC.
∴∠AFP=60°,∠APF=60°,
∴∠AFP=∠APF=∠A=60°,
∴△AFP是等边三角形,
∴AF=AP=PF.
∵PE⊥AB,
∴AE=EF.
∵∠CQP=30°,∠C=60°,
∴∠QPC=90°,
∴∠DPA=90°,
∴∠ADP=30°.
∴AD=2AP.
∴AD=2AF.
∵DF+AF=AD,
∴DF+AF=2AF,
∴DF=AF,
∵BQ=AP,
∴BQ=FP.
在△PFD和△QBD中
,
∴△PFD≌△QBD(ASA),
∴FD=BD.
∴BD=DF=AF=AB.
∵AB=6,
∴AF=2,
∴AP=2.
答:AP的长为2;
(2)如图2,作PF∥BC交AB于点F.
∴∠AFP=∠ABC,∠APF=∠C.∠PFD=∠QBD,∠FPD=∠BQD.
∵△ABC是等边三角形,
∴∠A=∠ABC=∠C=60°.AB=BC=AC.
∴∠AFP=60°,∠APF=60°,
∴∠AFP=∠APF=∠C=60°,
∴△AFP是等边三角形,
∴AF=AP=PF.
∵PE⊥AB,
∴AE=EF=AF.
∵BQ=AP,
∴BQ=FP.
由(1)知,△PFD≌△QBD(ASA),
∴FD=BD=BF.
∵ED=EF+DF=AF+BF,
∴ED=(AF+BF),
∴ED=AB.
科目:初中数学 来源: 题型:
【题目】张庄甲、乙两家草莓采摘园的草莓销售价格相同,“春节期间”,两家采摘园将推出优惠方案,甲园的优惠方案是:游客进园需购买门票,采摘的草莓六折优惠;乙园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,某游客的草莓采摘量为(千克),在甲园所需总费用为y甲(元),在乙园所需总费用为y乙(元),y甲、y乙与之间的函数关系如图所示,折线OAB表示y乙与之间的函数关系.
(1)甲采摘园的门票是 元,在乙园采摘草莓超过______后超过部分有打折优惠;
(2)当采摘量时,采摘多少千克草莓,甲、乙两家采摘园的总费用相同.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABP与是两个全等的等边三角形,且,有下列四个结论:①,②,③,④四边形ABCD是轴对称图形,其中正确的有
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于的一元二次方程.下列论断:若,则它有一根为;若它有一根为,则一定有;若,则它一定有两个不相等的实数根;其中正确的是( )
A. 个 B. 个 C. 个 D. 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y=x-3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,则点D的坐标为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=4,则BE=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是
A.一个游戏中奖的概率是,则做100次这样的游戏一定会中奖
B.为了了解全国中学生的心理健康状况,应采用普查的方式
C.一组数据0,1,2,1,1的众数和中位数都是1
D.若甲组数据的方差,乙组数据的方差,则乙组数据比甲组数据稳定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC与△DEC是两个大小不同的等腰直角三角形.
(1)如图①所示,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由;
(2)如图②所示,连接DB,将线段DB绕D点顺时针旋转90°到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,,,对角线,相交于点,将直线绕点顺时针旋转,分别交,于点,,下列说法不正确的是( )
A. 当时,四边形一定为平行四边形
B. 当四边形为直角梯形时,线段
C. 当时,四边形一定为菱形
D. 在旋转的过程中,线段与总相等
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com