精英家教网 > 初中数学 > 题目详情
如图,以扇形OAB的顶点O为原点,半径OB所在的直线为轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线与扇形OAB的边界总有两个公共点,则实数的取值范围是                  .
-2<k<

试题分析:根据∠AOB=45°求出直线OA的解析式,然后与抛物线解析式联立求出有一个公共点时的k值,即为一个交点时的最大值,再求出抛物线经过点B时的k的值,即为一个交点时的最小值,然后写出k的取值范围即可.
试题解析:由图可知,∠AOB=45°,
∴直线OA的解析式为y=x,
联立
消掉y得,x2-2x+2k=0,
△=b2-4ac=(-2)2-4×1×2k=0,
即k=时,抛物线与OA有一个交点,
此交点的横坐标为1,
∵点B的坐标为(2,0),
∴OA=2,
∴点A的坐标为(),
∴交点在线段AO上;
当抛物线经过点B(2,0)时,×4+k=0,
解得k=-2,
∴要使抛物线y=x2+k与扇形OAB的边界总有两个公共点,实数k的取值范围是-2<k<
考点: 二次函数的性质.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

二次函数y=2(x-1)-1的顶点是(    ).
A.(1,-1)B.(1,1)C.(-1,1)D.(2,-l)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线yn=-(x-an)2+an(n为正整数,且0<a1<a2<…<an)与x轴的交点为An-1(,0)和An(bn,0).当n=1时,第1条抛物线y1=-(x-a1)2+a1与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推.

(1) 求a1、b1的值及抛物线y2的解析式;
(2) 抛物线y3的顶点坐标为(____,___);依此类推第n条抛物线yn的顶点坐标为(_____,_____)(用含n的式子表示);所有抛物线的顶点坐标满足的函数关系式是_____________;
(3) 探究下列结论:
①若用An-1 An表示第n条抛物线被x轴截得的线段的长,则A0A1=______An-1 An=____________
②是否存在经过点A1(b1,0)的直线和所有抛物线都相交,且被每一条抛物线截得的线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数的顶点坐标为,并且经过平移后能与抛物线重合,那么这个二次函数的解析式是       

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线y=x与抛物线y=x2交于A、B两点.

(1)求交点A、B的坐标;
(2)记一次函数y=x的函数值为y1,二次函数y=x2的函数值为y2.若y1>y2,求x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线y=x2﹣2x+3的顶点坐标是(  )
A.(1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣1,﹣2)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=a(x+1)2-b(a≠0)有最小值,则a,b的大小关系为 (  )
A.a>bB.a<b
C.a=bD.不能确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知点A(1,2)和B(-2,5),试求出两个二次函数,使它们的图象都经过A、B两点.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图为二次函数(a≠0)的图象,则下列说法:①a>0 ②2a+b="0" ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为(     ).
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案