精英家教网 > 初中数学 > 题目详情

【题目】阅读下面材料:

小天在学习锐角三角函数中遇到这样一个问题:在中,,则______

小天根据学习几何的经验,先画出了几何图形如图,他发现不是特殊角,但它是特殊角的一半,若构造有特殊角的直角三角形,则可能解决这个问题于是小天尝试着在CB边上截取,连接如图,通过构造有特殊角的直角三角形,经过推理和计算使问题得到解决.

请回答:______

参考小天思考问题的方法,解决问题:

如图3,在等腰中,,请借助,构造出的角,并求出该角的正切值.

【答案】,2-.

【解析】

如图2,设为等腰直角三角形,则,易得,所以,再在中,利用正切定义可计算出,即

如图3,延长BAD,使,则,则,利用三角形外角性质易得,作H,设,利用含30度三边的关系得到,则,然后在中,利用正切的定义可计算出,即

解:如图2,设,则






中,

故答案为
如图3,延长BA到D,使,则




于H,设,则


中,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图△ABC内接于⊙O,,点上的动点,且.

(1)的长度;

(2)在点D运动的过程中,弦AD的延长线交BC的延长线于点E,问ADAE的值是否变化?若不变,请求出ADAE的值;若变化,请说明理由.

(3)在点D的运动过程中,过A点作AH⊥BD,求证:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,在ABC中,∠B45°,点DBC边的中点,DEBC于点D,交AB于点E,连接CE

1)求∠AEC的度数;

2)请你判断AEBEAC三条线段之间的等量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线的顶点为C(﹣1,﹣1),且经过点A、点B和坐标原点O,点B的横坐标为﹣3.

(1)求抛物线的解析式.

(2)求点B的坐标及△BOC的面积.

(3)若点D为抛物线上的一点,点E为对称轴上的一点,且以点A、O、D、E为顶点的四边形为平行四边形,请在左边的图上标出D和E的位置,再直接写出点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:小明研究了这样一个问题:求使得等式成立的x的个数.小明发现,先将该等式转化为,再通过研究函数的图象与函数的图象(如图)的交点,使问题得到解决.

1)当k1时,使得原等式成立的x的个数为_______

2)当0k1时,使得原等式成立的x的个数为_______

3)当k1时,使得原等式成立的x的个数为_______

参考小明思考问题的方法,解决问题:关于x的不等式只有一个整数解,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过两点.

求抛物线的函数表达式;

求抛物线的顶点坐标,直接写出当时,x的取值范围;

设点M是抛物线的顶点,试判断抛物线上是否存在点H满足?若存在,请求出点H的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:过外一点C直径AF,垂足为E,交弦ABD,若,则

判断直线BC的位置关系,并证明;

OA中点,,请直接写出图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用y=x2+bx+c表示,且抛物线上的点COB的水平距离为3 m,到地面OA的距离为m.

(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;

(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?

(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?

查看答案和解析>>

同步练习册答案