精英家教网 > 初中数学 > 题目详情

已知:如图,点B在y轴的负半轴上,点A在x轴的正半轴上,且OA=2,∠OAB=2。

(1)求点B的坐标;
(2)求直线AB的解析式;
(3)若点C的坐标为(-2,0),在直线AB上是否存在一点P,使ΔAPC与ΔAOB相似,若存在,求出点P的坐标;若不存在,请说明理由。

(1)B(0,-4)(2)直线AB的解析式为y=2x-4(3)存在点P1(-2,-8), P2(,-),使ΔAPC与ΔAOB相似。

解析试题分析:解:(1)在Rt△ABC中,
∠OAB=
∵OA=2,∠OAB=2
∴OB=4
∵点B在y轴的负半轴上
∴B(0,-4)
(2) ∵OA=2     ∴A(2,0)
设直线AB的解析式为y=kx+b(k≠0)

∴直线AB的解析式为y=2x-4
(3)过C作P1C∥OB交AB于P1

这时ΔAPC与ΔAOB相似
当x=-2时,y=-8
∴P1(-2,-8)
过C作P2CAB交AB于P2,过P2作P1DAC于D
由ΔAOB∽ΔACP2,求出AP2=
由ΔAOB∽ΔADP2,求出AD=∴OD=,
当x=时,y=-
∴P1(,-)
存在点P1(-2,-8), P2(,-),使ΔAPC与ΔAOB相似
考点:坐标及解析式
点评:本题难度较大。主要考查学生对坐标轴,解析式,三角函数值,证相似三角形等知识点的结合运用。一次函数直线解析式一般式为。求直线解析式时需要具备2个已知点坐标,为解题关键。题(3)中求证点P是否存在使两三角形相似。通过证相似三角形的判定定理我们可知必然需要得到两三角形对应角相等或者对应边比值相等的条件才能证相似。那么假设存在该点P使形成的三角形与已知的直角三角形相似,通过做辅助垂线,构成两组对应角相等是解题关键,然后得到两个P点,并通过点P在直线AB上,用直线AB解析式求出点P坐标。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1998•南京)已知:如图,点P在∠AOB的边OA上.
(1)作图(保留作图痕迹)
①作∠AOB的平分线OM;
②以P为顶点,作∠APQ=∠AOB,PQ交OM于点C;
③过点C作CD⊥OB,垂足为点D.
(2)当∠AOB=30°时,求证:PC=2CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点C在BE上,AB∥ED,AB=CE,BC=ED.
求证:∠ACB=∠D.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:BD=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,点F在AB上,点E在CD上,AE、DF分别交BC于H、G,∠A=∠D,∠FGB+∠EHG=180°,问AB与CD有怎样的位置关系?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知:如图,点C在线段AB上,AC=18cm,BC=6cm,点M、N分别是AC、BC的中点,求MN的长;
(2)把(1)中的“点C在线段AB上”改为“点C在直线AB上”,其它条件不变,则MN的长是多少?请说明你的理由.

查看答案和解析>>

同步练习册答案