【题目】如图1,是内任意一点,连接,分别以为边作(在的左侧)和(在的右侧),使得,,连接.
(1)求证:;
(2)如图2,交于点,若,点共线,其他条件不变,
①判断四边形的形状,并说明理由;
②当,,且四边形是正方形时,直接写出的长.
【答案】(1)证明见解析;(2)①四边形是矩形.理由见解析;②.
【解析】
(1)根据,得到,,再证,
方法一:通过证明,,从而四边形是平行四边形, ,所以为矩形.
方法二:证明
方法三:证,,.
(1)∵,
∴,.
∴,,即..
∴.
(2)①四边形是矩形.理由如下:
方法一:由(1)知,.
∴.
∵,
∴.
∴.
∴.
∵,∴,.
∴,,即.
∴. ∴.
∵. ∴.
∴.∴.∴.
∴四边形是平行四边形.
∵,,点共线,∴.
∴四边形是矩形.
方法二:如图
由(1)知,∴.
∵,,点共线,∴.
∴,.
又∵,∴.
∴.
∴.
∵,
∴,即.
∴.
∵,∴,
∴,,即.
∴,∴.
∵,,点共线,
∴.
∴,.
∴,即.
∴.
∵,,
∴四边形是矩形.
方法三:由(1)知,.
∴.
∵,
∴.
∴.
∴.
由(1)知,∴.
∵,,点共线,∴.
∴,.
又∵,∴,∴.
∴.
∵,∴,即.
∴. ∵,∴.
∴四边形是矩形.
②
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,射线BC交⊙O于点D,E是劣弧AD上一点,且=,过点E作EF⊥BC于点F,延长FE和BA的延长线交与点G.
(1)证明:GF是⊙O的切线;
(2)若AG=6,GE=6,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程(米)与时间(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是( )
A. 乙队率先到达终点
B. 甲队比乙队多走了米
C. 在秒时,两队所走路程相等
D. 从出发到秒的时间段内,乙队的速度慢
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是一个由若干同样大小的正方体搭成的几何体俯视图,小正方形中的数字表示在该位置的立方体的个数.
(1)请你画出它的从正面看和从左面看的形状图.
(2)如果每个立方体的棱长为2cm,则该几何体的表面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过三点
(1)求抛物线的解析式;
(2)在直线上方的抛物线上是否存在一点,使的面积等于的面积的一半?若存在,求出点的坐标;若不存在,说明理由;
(3)点为抛物线上一动点,在轴上是否存在点,使以,,,为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在中,,,垂足为点,是外角的平分线,,垂足为点,连接交于点.
求证:四边形为矩形;
当满足什么条件时,四边形是一个正方形?并给出证明.
在的条件下,若,求正方形周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,点在斜边上,以为圆心,为半径作圆,分别与、相交于点、,连接,已知.
(1)求证:是的切线;
(2)若,,求劣弧与弦所围阴影图形的面积;
(3)若,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5m,EF=0.25m,目测点D到地面的距离DG=1.5m,到旗杆的水平距离DC=20m,则旗杆的高度为( )
A. mB. m
C.11.5mD.10m
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com