精英家教网 > 初中数学 > 题目详情
已知△ABC的三边分别为x、y、z.
(1)以
x
y
z
为三边的三角形一定存在;
(2)以x2、y2、z2为三边的三角形一定存在;
(3)以
1
2
(x+y)、
1
2
(y+z)、
1
2
(z+x)为三边的三角形一定存在;  
(4)以|x-y|+l、|y-z|+l、|z-x|+l为三边的三角形一定存在.
以上四个结论中,正确结论的个数为(  )
A.1B.2C.3D.4
不妨设x≤y≤z,则必有x+y>z,
(1)
x
+
y
x+y
z
,此结论正确;
(2)设x=3,y=4,z=5,则x2,y2,z2构不成三角形,此结论不正确;
(3)
1
2
(x+y)≤
1
2
(x+z)≤
1
2
(y+z),此结论正确;
(4)(y-x)+(z-y)≡z-x,则(y-x+1)+(z-y+1)>z-x+1,此结论正确.
所以(1)(3)(4)正确.
故选C.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)计算:(
48
+
20
)-(
12
-
5

(2)已知△ABC的三边分别是a=5,b=12,c=13,设p=
1
2
(a+b+c)
S1=
1
4
[a2b2-(
a2+b2-c2
2
)
2
]
S2=
p(p-a)(p-b)(p-c)
,求S1-S2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

3、已知△ABC的三边分别是4,5,6,则与它相似△A′B′C′的最长边为12,则△A′B′C′的周长是
30

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC的三边分别是a、b、c,且满足
a-3
+b2-4b+4=0
,则c的取值范围是
1<c<5
1<c<5

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC的三边分别是a、b、c,且满足a2b-a2c-b3+b2c-bc2+c3=0,试判断△ABC的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)计算:(-2a)2-(a-2)(a-6)
(2)[(x-2y)2-(x-2y)(x+2y)]÷4y
(3)已知ABC的三边分别是a=m2-n2,b=2mn,c=m2+n2.试判断ABC是否是直角三角形.

查看答案和解析>>

同步练习册答案