精英家教网 > 初中数学 > 题目详情

【题目】对于平面图形上的任意两点P,Q,如果经过某种变换得到新图形上的对应点P′,Q′,保持PQ=P′Q′,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是(

A.平移 B.旋转 C.轴对称 D.位似

【答案】D

【解析】

试题分析:平移的性质是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,则平移变换是“等距变换”;

旋转的性质:旋转前、后的图形全等,则旋转变换是“等距变换”;

轴对称的性质:成轴对称的两个图形全等,则轴对称变换是“等距变换”;

位似变换的性质:位似变换的两个图形是相似形,则位似变换不一定是等距变换,故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的小正方形组成的方格纸中,有一个以格点为顶点的ABC

(1)试根据三角形三边关系,判断ABC的形状;

(2)在方格纸中利用直尺分别画出AB、BC的垂直平分线,交点为O.观察点O的位置,你能得出怎样的结论?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学家莫伦在1925年发现了世界上第一个完美长方形.如图是一个完美长方形,它恰能被分割成10个大小不同的正方形,其中标注番号1的正方形边长为5,则这个完美长方形的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,“赵爽弦图”由4个全等的直角三角形拼成,在RtABC中,ACB=90°,AC=b,BC=a,请你利用这个图形解决下列问题:

(1)证明勾股定理;

(2)说明a2+b2≥2ab及其等号成立的条件.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,时钟的时针,分针均按时正常转动.

(1)分针每分针转动了 度,时针每分钟转动了 度;

(2)若现在时间恰好是2点整,求:

①经过多少分钟后,时针与分针第一次成90°角;

②从2点到4点(不含2点)有几次时针与分针成60°角,分别是几时几分?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a7b=2,则2a+14b+4的值是(

A.0 B. 2 C.4 D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣x2+bx+c与坐标轴分别交于点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动.

(1)直接写出抛物线的解析式:

(2)求CED的面积S与D点运动时间t的函数解析式;当t为何值时,CED的面积最大?最大面积是多少?

(3)当CED的面积最大时,在抛物线上是否存在点P(点E除外),使PCD的面积等于CED的最大面积?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)在4×4的方格中有五个同样大小的正方形如图1摆放,移动其中一个正方形到空白方格中,与其余四个正方形图2至图5组成的新图形是一个轴对称图形,请在下面网格中画出四种互不全等的新图形.

(2)定义:如图1,点M,N把线段AB分割成AM,MN和BN.若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.已知点C是线段AB上的一定点,其位置如图2所示,请在BC上画一个点D,使点C,D是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可);

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一种记分方法:以80分为准,88分记为+8分,某同学得分为74分,则应记为( )

A.+74分

B.﹣74分

C.+6分

D.﹣6分

查看答案和解析>>

同步练习册答案