精英家教网 > 初中数学 > 题目详情
如图:在平面直角坐标系中,A(4,0)、B(-1,0)。C以AB的中点P为圆心,AB为直径作⊙P与y轴的正半轴交于点C。
(1) 求经过A、B、C三点的抛物线对应的函数解析式;
(2) 设M为(1)抛物线的顶点,求直线MC对应的函数解析式;
(3) 试说明直线MC与⊙P的位置关系,并证明你的结论。
解:(1)连结PC,
∵A(4,0)、B(-1,0),
∴AB=5,
∴PC=OP=OA-PA=4-=,OC=2,
∴C(0,2),
设经过A、C、B三点的抛物线的解析式为y=a(x+1)(x-4),
将C(0,2)代入得2=a(0-4)(0+1),
∴a=-
∴y=-(x+1)(x-4)即y=-x2+x+2;
(2)由y=-x2+x+2=-(x-2+
∴M(),
设直线CM的解析式为y=kx+2,将M()代入解得k=,∴y=x+2;
(3)结论:直线CM与⊙P相切。
证明:设MC与x轴相交于点N,由y=0解得x=-
∴ON=PN=+=,NC=
∴CN2+PC2=PN2即(2+(2=(2
∴∠PCN=90°,
∴MC与⊙P相切。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案