精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,线段AB的端点坐标为A(-1,2),B(3,1),若直线y=kx-2与线段AB有交点,则k的值可能是


  1. A.
    -3
  2. B.
    -2
  3. C.
    -1
  4. D.
    2
D
分析:先求出直线y=kx-2与y轴的交点C的坐标,再利用待定系数法求出直线AC、BC的解析式,然后根据直线与线段AB有交点,则k值小于AC的k值,或大于BC的k值,然后根据此范围进行选择即可.
解答:解:令x=0,则y=0•k-2=-2,
所以直线y=kx-2与y轴的交点坐标为(0,-2),
设直线AC的解析式为y=mx+n,

解得
所以直线AC的解析式为y=-4x-2,
设直线BC的解析式为y=ex+f,

解得
所以直线BC的解析式为y=x-2,
若直线y=kx-2与线段AB有交点,则k的取值范围是k≤-4或k≥1,
纵观各选项,只有D选项符号.
故选D.
点评:本题考查了两直线相交的问题,根据已知直线求出与y轴的交点坐标,然后求出两直线的解析式是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案