【题目】跳绳是大家喜闻乐见的一项体育运动,集体跳绳时,需要两人同频甩动绳子,当绳子甩到最高处时,其形状可近似看作抛物线.如图是小明和小亮甩绳子到最高处时的示意图,两人拿绳子的手之间的距离为,离地面的高度为,以小明的手所在位置为原点,建立平面直角坐标系.
(1)当身高为的小红站在绳子的正下方,且距小明拿绳子手的右侧处时,绳子刚好通过小红的头顶,求绳子所对应的抛物线的表达式;
(2)若身高为的小丽也站在绳子的正下方.
①当小丽在距小亮拿绳子手的左侧处时,绳子能碰到小丽的头吗?请说明理由;
③设小丽与小亮拿绳子手之间的水平距离为,为保证绳子不碰到小丽的头顶,求的取值范围.(参考数据:取3.16)
【答案】(1);(2)①绳子能碰到小丽的头,见解析;②
【解析】
(1)因为抛物线过原点,可设抛物线的解析式为:y=ax2+bx(a≠0),把小亮拿绳子的手的坐标(4,0),以及小红头顶坐标(1,1.5-1)代入,得到三元一次方程组,解方程组便可;
(2)①由自变量的值求出函数值,再比较便可;
②由y=0.65时求出其自变量的值,便可确定d的取值范围.
(1)设抛物线的解析式为:,
∵,
∴抛物线经过点和,
∴,
解得,,
∴绳子对应的抛物线的解析式为:;
(2)①绳子能碰到小丽的头.理由如下:
∵小丽在距小亮拿绳子手的左侧处,
∴小丽距原点,
∴当时,,
∵,
∴绳子能碰到小丽的头;
②∵,
∴当时,
即,
解得,
∵取3.16,
∴,,
∴,,
∴,
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.
(1)若BM=BN,求t的值;
(2)若△MBN与△ABC相似,求t的值;
(3)当t为何值时,四边形ACNM的面积最小?并求出最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线经过定点A.
(1)直接写出A点坐标;
(2)直线y=t (t<6)与抛物线交于B,C两点(B在C 的左边),过点A作AD⊥BC于点D,是否存在t的值,使得对于任意的m,∠DAC=∠ABD恒成立,若存在,请求t的值;若不存在,请说明理由.
(3)如图,当m=1时,直线y=2x交对称轴于点E,在直线OE的右侧作∠EOP交抛物线于点P,使得tan∠EOP=,已知x轴上有一个点M(t,0), EM+PM是否存在最小值?若存在,求t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).
(1)直接用含t的代数式分别表示:QB= ,PD= .
(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;
(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工程对承接了60万平方米的绿化工程,由于情况有变,……,设原计划每天绿化的面积为万平方米,列方程为,根据方程可知省略的部分是( )
A.实际工作时每天的工作效率比原计划提高了20%,结果提前30天完成了这一任务
B.实际工作时每天的工作效率比原计划提高了20%,结果延误30天完成了这一任务
C.实际工作时每天的工作效率比原计划降低了20%,结果延误30天完成了这一任务
D.实际工作时每天的工作效率比原计划降低了20%,结果提前30天完成了这一任务
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查,调查结果显示支付方式有:微信、支付宝、现金、其他.该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:
(1)本次一共调查了 名购买者?
(2)请补全条形统计图;在扇形统计图中,种支付方式所对应的圆心角为 度;
(3)若该超市这一周内有2000名购买者,请你估计使用和两种支付方式的购买者共有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线y=x与BC边相交于D.
(1)求点D的坐标:
(2)若抛物线y=ax+bx经过D、A两点,试确定此抛物线的表达式:
(3)P为x轴上方(2)题中的抛物线上一点,求△POA面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com