| A. | 45° | B. | 36° | C. | 90° | D. | 135° |
分析 由AB=AC,AD=CD=BC,根据等角对等边的知识,可得∠A=∠ACD,∠B=∠ACB=∠CDB,设∠A=x°,根据等腰三角形的性质得出∠ACD=x°,∠B=∠ACB=∠CDB=2x°,然后根据三角形的内角和定理得出关于x的方程,解方程即可求得答案.
解答 解:∵BC=AC,AD=BD=CD,
∴∠A=∠ACD,∠B=∠ACB=∠CDB,
设∠A=x°,则∠ACD=∠A=x°,
∴∠B=∠ACB=∠CDB=∠A+∠ACD=2x°
∵∠A+∠B+∠ACB=180°,
∴x+2x+2x=180,
∴x=36,
∴∠A=36°.
故选B.
点评 本题考查了三角形的内角和定理,三角形的外角性质,等腰三角形的性质等知识,此题难度适中,解题的关键是掌握数形结合思想与方程思想的应用.
科目:初中数学 来源: 题型:选择题
| A. | ∠A是直角 | B. | ∠B是直角 | C. | ∠C是直角 | D. | 以上都不对 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com