精英家教网 > 初中数学 > 题目详情
(2009•石景山区一模)已知:如图1,射线AM∥射线BN,AB是它们的公垂线,点D、C分别在AM、BN上运动(点D与点A不重合、点C与点B不重合),E是AB边上的动点(点E与A、B不重合),在运动过程中始终保持DE⊥EC,且AD+DE=AB=a.
(1)求证:△ADE∽△BEC;
(2)如图2,当点E为AB边的中点时,求证:AD+BC=CD;
(3)设AE=m,请探究:△BEC的周长是否与m值有关?若有关,请用含有m的代数式表示△BEC的周长;若无关,请说明理由.

【答案】分析:(1)欲证△ADE∽△BEC,由图形知证明两组对应角相等即可;
(2)梯形中位线平行于两底,并且等于两底和的一半,可过点E作EF∥BC,交CD于点F,得出,根据直角三角形的性质即可证明AD+BC=CD;
(3)根据△ADE∽△BEC,设AD=x,可以先求△ADE的周长,根据相似比得出△BEC的周长=2a,与m值无关.
解答:(1)证明:∵DE⊥EC,
∴∠DEC=90°.
∴∠AED+∠BEC=90°
又∵∠A=∠B=90°
∴∠AED+∠EDA=90°.
∴∠BEC=∠EDA.∴△ADE∽△BEC.

(2)证明:如图,过点E作EF∥BC,交CD于点F,
∵E是AB的中点,根据平行线等分线段定理,得F为CD的中点,

在Rt△DEC中,∵DF=CF,

=
∴AD+BC=CD.

(3)解:△AED的周长=AE+AD+DE=a+m,BE=a-m.
设AD=x,则DE=a-x.
∵∠A=90°,
∴DE2=AE2+AD2
即a2-2ax+x2=m2+x2

由(1)知△ADE∽△BEC,
===
∵C△ADE=a+m,
∴C△BEC=2a,
∴无影响.(8分)
点评:本题考查梯形中位线平行于两底,并且等于两底和的一半,三角形的相关知识,相似三角形的性质,综合性较强.
练习册系列答案
相关习题

科目:初中数学 来源:2009年北京市石景山区中考数学一模试卷(解析版) 题型:解答题

(2009•石景山区一模)已知:如图,直角三角形AOB的两直角边OA、OB分别在x轴的正半轴和y轴的负半轴上,C为线段OA上一点,OC=OB,抛物线y=x2-(m+1)x+m(m是常数,且m>1)经过A、C两点.
(1)求出A、B两点的坐标(可用含m的代数式表示);
(2)若△AOB的面积为2,求m的值.

查看答案和解析>>

科目:初中数学 来源:2009年北京市石景山区中考数学二模试卷(解析版) 题型:解答题

(2009•石景山区二模)如图,在平面直角坐标系中,O为坐标原点,△AOB为等边三角形,点A的坐标是(4,0),点B在第一象限,AC是∠OAB的平分线,并且与y轴交于点E,点M为直线AC上一个动点,把△AOM绕点A顺时针旋转,使边AO与边AB重合,得到△ABD.
(1)求直线OB的解析式;
(2)当M与点E重合时,求此时点D的坐标;
(3)是否存在点M,使△OMD的面积等于3?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年北京市石景山区中考数学二模试卷(解析版) 题型:解答题

(2009•石景山区二模)如图,四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线y=ax2+bx+c恰经过x轴上的点A,B.
(1)求点C的坐标;
(2)若抛物线向上平移后恰好经过点D,求平移后抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:2009年江苏省连云港市中考数学原创试卷大赛(12)(解析版) 题型:选择题

(2009•石景山区二模)有一列数a1,a2,a3,a4,…,an,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2008值为( )
A.2
B.-1
C.
D.2008

查看答案和解析>>

科目:初中数学 来源:2009年山东省日照市中考数学模拟试卷2(丁文斌)(解析版) 题型:选择题

(2009•石景山区二模)有一列数a1,a2,a3,a4,…,an,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2008值为( )
A.2
B.-1
C.
D.2008

查看答案和解析>>

同步练习册答案