【题目】如图,已知四边形ABCD和直线MN,点O在直线MN上.
(1)画出四边形使四边形与四边形ABCD关于直线MN成轴对称;
(2)画出四边形使四边形与四边形ABCD关于点O对称:
(3)四边形和四边形是轴对称和中心对称吗?若是,请在图上画出对称轴或对称中心.
科目:初中数学 来源: 题型:
【题目】如图,点O为原点,A、B为数轴上两点,AB=15,且OA:OB=2:1,点P从点B以每秒4个单位的速度向右运动.
(1)A、B对应的数分别为 、 ;
(2)当点P运动时,分别取BP的中点E,AO的中点F,请画图,并求出的值;
(3)若当点P开始运动时,点A、B分别以每秒2个单位和每秒5个单位的速度同时向右运动,是否存在常数m,使得3AP+2OP﹣mBP为定值?若存在,请求出m的值以及这个定值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点在数轴上对应的数为,点对应的数为,关于,的多项式是6次多项式,且常数项为-6.
(1)点到的距离为______(直接写出结果);
(2)如图1,点是数轴上一点,点到的距离是到的距离的3倍(即),求点在数轴上对应的数;
(3)如图2,点,分别从点,同时出发,分别以,的速度沿数轴负方向运动(在,之间,在,之间),运动时间为,点为,之间一点,且点到的距离是点到距离的一半(即),若,运动过程中到的距离(即)总为一个固定的值,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分c1与经过点A、D、B的抛物线的一部分c2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣ ),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.
(1)求A、B两点的坐标;
(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;
(3)当△BDM为直角三角形时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某游泳馆普通票价20元张,暑假为了促销,新推出两种优惠卡:
金卡售价600元张,每次凭卡不再收费.
银卡售价150元张,每次凭卡另收10元.
暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数设游泳x次时,所需总费用为y元
分别写出选择银卡、普通票消费时,y与x之间的函数关系式;
在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;
请根据函数图象,直接写出选择哪种消费方式更合算.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)下面的图形是由边长为l的正方形按照某种规律排列而组成的.
(1)观察图形,填写下表:
图形 | ① | ② | ③ |
正方形的个数 | 8 |
|
|
图形的周长 | 18 |
|
|
(2)推测第n个图形中,正方形的个数为 ,周长为 (都用含n的代数式表示).
(3)这些图形中,任意一个图形的周长y与它所含正方形个数x之间的关系可表示为y= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地轿车的平均速度大于货车的平均速度,如图,线段OA、折线BCD分别表示两车离甲地的距离单位:千米与时间单位:小时之间的函数关系.
线段OA与折线BCD中,______表示货车离甲地的距离y与时间x之间的函数关系.
求线段CD的函数关系式;
货车出发多长时间两车相遇?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com