精英家教网 > 初中数学 > 题目详情

【题目】如图,在平整的地面上,用若干个棱长完全相同的小正方体堆成一个几何体.

(1)请画出这个几何体的三视图.

(2)如果现在你手头还有一些相同的小正方体,要求保持俯视图和左视图不变,最多可以再添加几个小正方体

【答案】1)画图见解析;(24.

【解析】试题分析:(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2,左视图有3列,每列小正方形数目分别为3,2,1;俯视图有3列,每列小正方数形数目分别为3,2,1,据此可画出图形.(2)可在第二层第二列第二行和第三行各加一个;第三层第二列第三行加一个,第三列第三行加1个,相加即可求解.

【解答】解:(1)如图所示:;(2)在第二层第二列第二行和第三行各加一个;第三层第二列第三行加一个,第三列第三行加1个,2+1+1=4(个).故最多可再添加4个小正方体.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足 = ,连接AF并延长交⊙O于点E,连接AD,DE,若CF=2,AF=3,给出下列结论:①△ADF∽△AED;②FG=2;③tanE= ;④SDEF=4 ,其中正确的是(
A.①②③
B.②③④
C.①②④
D.①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在开展好书伴我成长的读书活动中,某中学为了解八年级300名学生读书情况,随机调查了八年级50名学生读书的册数.统计数据如下表所示:

(1)求这50个样本数据的平均救,众数和中位数.

(2)根据样本数据,估计该校八年级300名学生在本次活动中读书多于2册的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】10分在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要35万元,购买2台电脑和1台电子白板需要25万元

1求每台电脑、每台电子白板各多少万元?

2根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次函数ykx-6中,已知yx的增大而减小.下列关于反比例函数y

的描述,其中正确的是( )

A. x>0时,y>0 B. yx的增大而增大

C. yx的增大而减小 D. 图像在第二、四象限

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在股市交易中,每买、卖一次需付交易款的千分之七点五作为交易费用,某投资者以每股10元的价格买入某股票1 000股,下表为第一周内每日该股票的涨跌情况(单位:元).

星期

每股涨跌

+2

+1.5

-0.5

-4.5

+2.5

(1)星期三收盘时,每股是多少元?

(2)本周内每股最高价是多少元?最低价是多少元?

(3)若该投资者在星期五收盘前将股票全部卖出,他的收益情况如何?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A、B两组卡片共5张,A中三张分别写有数字2,4,6,B中两张分别写有3,5.它们除了数字外没有任何区别.
(1)随机地从A中抽取一张,求抽到数字为2的概率;
(2)随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果,现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?
(3)如果不公平请你修改游戏规则使游戏规则对甲乙双方公平.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)已知关于x的方程kx=11﹣2x有整数解,则负整数k的值为   

(2)若a+b+c=0,且abc,以下结论:

a>0,c>0;

②关于x的方程ax+b+c=0的解为x=1;

a2=(b+c2

的值为02;

⑤在数轴上点ABC表示数abc,若b<0,则线段AB与线段BC的大小关系是ABBC

其中正确的结论是   (填写正确结论的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把几个数用大括号围起来,中间用逗号断开,如:{1,2,﹣3}、{﹣2,7,,19},我们称之为集合,其中的每个数称为该集合的元素.如果一个所有元素均为有理数的集合满足:当有理数a是集合的元素时,2015﹣a也必是这个集合的元素,这样的集合我们称为好的集合.例如集合{2015,0}就是一个好的集合.

(1)集合{2015}_____好的集合,集合{﹣1,2016}_____好的集合(两空均填“是”或“不是”);

(2)若一个好的集合中最大的一个元素为4011,则该集合是否存在最小的元素?如果存在,请直接写出答案,否则说明理由;

(3)若一个好的集合所有元素之和为整数M,且22161<M<22170,则该集合共有几个元素?说明你的理由.

查看答案和解析>>

同步练习册答案