分析 (1)运用勾股定理直接求出;
(2)首先求出△ABD中BD边上的高,然后根据面积公式列出方程,求出BD的值,分两种情况分别求出t的值;
(3)假设△ABD≌△ACE,根据全等三角形的对应边相等得出BD=CE,分别用含t的代数式表示CE和BD,得到关于t的方程,从而求出t的值.
解答 解:(1)∵在△ABC中,AB=AC,∠BAC=90°,
∴2AB2=BC2,
∴AB=$\frac{BC}{\sqrt{2}}=4\sqrt{2}$cm;
(2)如图所示,![]()
①当D在B点右侧,且BD=AB,
∴BD=AB=4$\sqrt{2}$cm,
∴CD=BC-BD=8-4$\sqrt{2}$cm,
∴t=$\frac{8-4\sqrt{2}}{2}$=(4-2$\sqrt{2}$)s;
②当D在B点右侧,且AD=BD,
∵AB=AC,∠BAC=90°
∴CD=BC=$\frac{1}{2}$BC=4cm,
∴t=$\frac{4}{2}$=2s;
③当D在B点左侧,且BD=AB,
∴CD=BC+BD=8+4$\sqrt{2}$cm,
∴t=$\frac{8+4\sqrt{2}}{2}$=(4+2$\sqrt{2}$)s;
故当t为4±2$\sqrt{2}$或2s时,△ABD为等腰三角形.
(3)动点E从点C沿射线CM方向运动$\frac{8}{3}$秒或当动点E从点C沿射线CM的反向延长线方向运动8秒时,△ABD≌△ACE.
理由如下:(说理过程简要说明即可)
①当E在射线CM上时,D必在CB上,则需BD=CE.
∵CE=t,BD=8-2t
∴t=8-2t,
∴t=$\frac{8}{3}$,
证明:在△ABD和△ACE中
∵$\left\{\begin{array}{l}{AB=AC}\\{∠B=∠ACE=45°}\\{BD=CE}\end{array}\right.$,
∴△ABD≌△ACE(SAS).
②当E在CM的反向延长线上时,D必在CB延长线上,则需BD=CE.
∵CE=t,BD=2t-8,
∴t=2t-8,
∴t=8,
证明:在△ABD和△ACE中
∵$\left\{\begin{array}{l}{AB=BC}\\{∠ABD=∠ACE=135°}\\{BD=CE}\end{array}\right.$,
∴△ABD≌△ACE(SAS).
点评 本题考查了等腰直角三角形、全等三角形的性质及面积,综合性强,题目难度适中,解决本题的关键是利用分类讨论的思想解决问题.
科目:初中数学 来源: 题型:选择题
| A. | $\frac{25x+20}{x+8}$=15 | B. | $\frac{25x-20}{x+8}$=15 | C. | $\frac{25x+20}{x}$=15 | D. | $\frac{25x-20}{x}$=15 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com