精英家教网 > 初中数学 > 题目详情
18.化简:$\frac{1}{\sqrt{3}+1}$+$\frac{1}{\sqrt{5}+\sqrt{3}}$+$\frac{1}{\sqrt{7}+\sqrt{5}}$+…+$\frac{1}{\sqrt{2017}+\sqrt{2015}}$.

分析 把各二次根式进行化简,找出规律进行计算即可.

解答 解:∵$\frac{1}{\sqrt{3}+1}$=$\frac{\sqrt{3}-1}{(\sqrt{3}+1)(\sqrt{3}-1)}$=$\frac{1}{2}$($\sqrt{3}$-1),$\frac{1}{\sqrt{5}+\sqrt{3}}$=$\frac{\sqrt{5}-\sqrt{3}}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}$=$\frac{1}{2}$($\sqrt{5}$-$\sqrt{3}$),
∴原式=$\frac{1}{2}$($\sqrt{3}$-1+$\sqrt{5}$-$\sqrt{3}$+$\sqrt{7}$-$\sqrt{5}$+…+$\sqrt{2017}$-$\sqrt{2015}$)
=$\frac{1}{2}$($\sqrt{2017}$-1)
=$\frac{\sqrt{2017}}{2}$-$\frac{1}{2}$.

点评 本题考查的是分母有理化,熟知分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

8.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是(  )
①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的垂直平分线上.
A.0B.1C.2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下列叙述,其中不正确的是(  )
A.两点确定一条直线
B.过一点有且只有一条直线与已知直线平行
C.同角(或等角)的余角相等
D.两点之间的所有连线中,线段最短

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,C、D是线段AB延长线上两点,若CD=4cm,DB=7cm,且B是AC的中点,则AC的长等于(  )
A.3cmB.6cmC.11cmD.14cm

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.一条抛物线经过A(1,0),B(3,0),C(0,3)三点,其顶点为D,则△DBC的面积=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,已知AB∥CF,E为DF的中点,若AB=6cm,CF=4cm,则BD=2cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在△ABC中,已知AB=AC,∠BAC=90°,BC=8cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒2cm的速度运动,动点E也同时从点C开始在直线CM上以每秒1cm的速度运动,连接AD、AE,设运动时间为t(t>0)秒.

(1)求AB的长;
(2)当t为多少时,△ABD为等腰三角形?
(3)当t为多少时,△ABD≌△ACE,并简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图所示,在平行四边形ABCD中,∠A=90°,AB=6cm,BC=12cm,点E由点A出发沿AB方向向点B匀速移动,速度为1cm/s,点F由点B出发沿BC方向向点C匀速移动,速度为2cm/s,如果动点E、F同时从A、B两点出发,连接EF,若设运动时间为ts,解答下列问题.
(1)当t为2s时,△BEF为等腰直角三角形;
(2)当t为3s时,△DFC为等腰直角三角形;
(3)是否存在某一时刻,使△EFB∽△FDC?若存在,求出t的值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,CD是△ABC的边AB上的高,且AB=2BC=8,点B关于直线CD的对称点恰好落在AB的中点E处,则△BEC的周长为12.

查看答案和解析>>

同步练习册答案