| A. | 12 | B. | 4$\sqrt{3}$ | C. | 8$\sqrt{3}$ | D. | 6 |
分析 根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.
解答 解:∵旋转后AC的中点恰好与D点重合,即AD=$\frac{1}{2}$AC′=$\frac{1}{2}$AC,
∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,
∴∠DAD′=60°,
∴∠DAE=30°,
∴∠EAC=∠ACD=30°,
∴AE=CE,
在Rt△ADE中,设AE=EC=x,则有DE=DC-EC=AB-EC=6-x,AD=$\frac{\sqrt{3}}{3}$×6=2$\sqrt{3}$,
根据勾股定理得:x2=(6-x)2+(2$\sqrt{3}$)2,
解得:x=4,
∴EC=4,
则S△AEC=$\frac{1}{2}$EC•AD=4$\sqrt{3}$.
故选:B.
点评 此题考查了旋转的性质,含30度直角三角形的性质,勾股定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 如果a2=b2,那么a=b | B. | 如果ac=bc,那么a=b | ||
| C. | 如果a=b,那么2a+c=b+2c | D. | 如果a-c=b-c,那么a=b |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 进价(元/只) | 售价(元/只) | |
| 甲型 | 25 | 30 |
| 乙型 | 45 | 60 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com