精英家教网 > 初中数学 > 题目详情

如图,边长为1的正方形ABCD绕点A旋转得到正方形AB1ClD1,若AB1落在对角线AC上,连接A0,则∠AOB1等于


  1. A.
    22.5°
  2. B.
    45°
  3. C.
    67.5°
  4. D.
    75°
C
分析:根据正方形性质得出AD=AB1,∠DCA=45°,∠ADC=∠AB1O=90°,求出∠DAB1=45°,根据HL证Rt△ADO≌Rt△AB1O,求出∠DAO=∠OAB1=22.5°,根据三角形的内角和定理求出∠AOB1即可.
解答:∵边长为1的正方形ABCD绕点A旋转得到正方形AB1ClD1,若AB1落在对角线AC上,
∴AD=AB1,∠DCA=45°,∠ADC=∠AB1O=90°,
∴∠DAB1=90°-45°=45°,
∵在Rt△ADO和Rt△AB1O中

∴Rt△ADO≌Rt△AB1O(HL),
∴∠DAO=∠OAB1=×45°=22.5°,
∴∠AOB1=90°-22.5°=67.5°,
故选C.
点评:本题考查的知识点有正方形性质、三角形的内角和定理、全等三角形性质和判定、旋转性质,关键是求出∠DAO=∠OAB1=22.5°,题目比较典型,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,边长为
π2
的正△ABC,点A与原点O重合,若将该正三角形沿数轴正方向翻滚一周,点A恰好与数轴上的点A′重合,则点A′对应的实数是
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,边长为6的正方OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AC交于点P.
(1)当点E坐标为(3,0)时,证明CE=EP;
(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)”,结论CE=EP是否仍然成立,请说明理由;
(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,边长为6的正方OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AC交于点P.
(1)当点E坐标为(3,0)时,证明CE=EP;
(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)”,结论CE=EP是否仍然成立,请说明理由;
(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图将边长为1的正方形OAPB沿轴正方向连续翻转2006次,点P依次落在点,……的位置,则的横坐标=_________.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年新人教版九年级(上)期中数学试卷(7)(解析版) 题型:解答题

如图,边长为6的正方OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AC交于点P.
(1)当点E坐标为(3,0)时,证明CE=EP;
(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)”,结论CE=EP是否仍然成立,请说明理由;
(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案