精英家教网 > 初中数学 > 题目详情

【题目】小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图)

(1)请根据题中已有的信息补全频数分布表和频数分布直方图;

月均用水量/t

频数

百分比

2≤x3

2

4%

3≤x4

12

24%

4≤x5

5≤x6

10

20%

6≤x7

12%

7≤x8

3

6%

8≤x9

2

4%

 

(2)如果家庭月均用水量大于或等于4 t且小于7 t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户.

【答案】(1)见解析(2) 279

【解析】试题分析:(1)由已知信息,根据频数、频率和总量的关系,求出月均用水量4≤x<5所占百分比和频数,月均用水量6≤x<7的频数,从而补全频数分布表和频数分布直方图.

(2)求出样本中家庭月均用水量“大于或等于4t且小于7t” 所占百分比,即可用样本估计总体.

试题解析:(1)调查的总数是50户,

6≤x<7的户数是50×12%=6(), 

4≤x<5的户数是50-2-12-10-6-3-2=15(),

所占的百分比是×100%30%.

补全频数分布表如下:

月均用水量/t

频数

百分比

2≤x<3

2

4%

3≤x<4

12

24%

4≤x<5

15

30%

5≤x<6

10

20%

6≤x<7

6

12%

7≤x<8

3

6%

8≤x<9

2

4%

补全频数分布直方图如图.

(2)中等用水量家庭大约有450×(30%+20%+12%)=279().

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为E、F,点O为AC的中点.

(1)当点P与点O重合时如图1,求证:OE=OF
(2)直线BP绕点B逆时针方向旋转,当点P在对角线AC上时,且∠OFE=30°时,如图2,猜想线段CF、AE、OE之间有怎样的数量关系?并给予证明.
(3)当点P在对角线CA的延长线上时,且∠OFE=30°时,如图3,猜想线段CF、AE、OE之间有怎样的数量关系?直接写出结论即可.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角三角形OAB中,∠AOB=90°,∠A=60°∠xOA=30°,AB与y轴的交点坐标D为(0,4)。求A、B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.

(1)求证:ΔABF≌ΔEDF;
(2)将折叠的图形恢复原状,点F与BC边上的点G正好重合,连接DG,若AB=6,BC=8,.求DG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若顺次连接四边形ABCD各边中点所得四边形是矩形,则四边形ABCD必然是( )

A.菱形

B.对角线相互垂直的四边形

C.正方形

D.对角线相等的四边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于点F.已知AB=4,BC=6,F=55°,求线段EC的长和∠D的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知数轴上点A表示的数为6B是数轴上在A左侧的一点,且AB两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为tt0)秒.

1)数轴上点B表示的数是   ,点P表示的数是   (用含t的代数式表示);

2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点PQ同时出发.求:

①当点P运动多少秒时,点P与点Q相遇?

②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.

(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是______数(填“无理”或“有理”),这个数是______

(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是______

(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,-1,-5,+4,+3,-2当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知A(2,0),以OA为一边在第四象限内画正方形OABC,D(m,0)为x轴上的一个动点,以BD为一边画正方形BDFE(点E在直线x=2的右侧)

(1)当m>2时(如图1),试判断线段AE与CD的数量关系,并说明理由.

(2)当AE=时,求点F的坐标.

(3)连接CF、OF,请直接写出CF+OF的最小值.

查看答案和解析>>

同步练习册答案