精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABCD中,对角线AC、BD相交于点O,在BA的延长线上取一点E,连接OE交AD于点F.若CD=5,BC=8,AE=2,则AF=

【答案】
【解析】解:过O点作OM∥AD,
∵四边形ABCD是平行四边形,
∴OB=OD,
∴OM是△ABD的中位线,
∴AM=BM= AB= ,OM= BC=4,
∵AF//OM,
∴△AEF∽△MEO,
=
=
∴AF=
所以答案是
【考点精析】通过灵活运用平行四边形的性质和相似三角形的判定与性质,掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列方程中,没有实数根的是(
A.2x+3=0
B.x2﹣1=0
C. = ﹣3
D.x2+x﹣1=0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.
(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;
(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE= S△ACD , 求点E的坐标;

(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=﹣x+b与反比例函数y= (x>0)的图象交于点A(m,3)和B(3,1).
(1)填空:一次函数的解析式为 , 反比例函数的解析式为
(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算;
(1) ﹣|﹣3|+(﹣4)×2﹣1
(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两个施工队在六安(六盘水﹣安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x米,乙队每天铺设y米.
(1)依题意列出二元一次方程组;
(2)求出甲乙两施工队每天各铺设多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,M、N分别为AC,BC的中点.若S△CMN=1,则S四边形ABNM=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=2x与反比例函数y= (k≠0,x>0)的图象交于点A(1,a),B是反比例函数图象上一点,直线OB与x轴的夹角为α,tanα=
(1)求k的值.
(2)求点B的坐标.
(3)设点P(m,0),使△PAB的面积为2,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】新定义:我们把两条中线互相垂直的三角形称为“中垂三角形”.如图所示,△ABC中,AF、BE是中线,且AF⊥BE,垂足为P,像△ABC这样的三角形称为“中垂三角形”,如果∠ABE=30°,AB=4,那么此时AC的长为

查看答案和解析>>

同步练习册答案