精英家教网 > 初中数学 > 题目详情

【题目】如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则 的值为(
A.
B.
C.
D.随H点位置的变化而变化

【答案】B
【解析】解:设CH=x,DE=y,则DH= ﹣x,EH= ﹣y, ∵∠EMG=90°,
∴∠DME+∠CMG=90°.
∵∠DME+∠DEM=90°,
∴∠DEM=∠CMG,
又∵∠D=∠C=90°△DEM∽△CMG,
= = ,即 = =
∴CG= ,MG=
△CMG的周长为n=CM+CG+MG=
在Rt△DEM中,DM2+DE2=EM2
即( ﹣x)2+y2=( ﹣y)2
整理得 ﹣x2=
∴n=CM+MG+CG= = =
=
故选:B.
【考点精析】本题主要考查了翻折变换(折叠问题)的相关知识点,需要掌握折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了解某校“振兴阅读工程”的开展情况,教育部门对该校初中生的阅读情况进行了随机问卷调查,绘制了如下图表: 初中生喜爱的文学作品种类调查统计表

种类

小说

散文

传记

科普

军事

诗歌

其他

人数

72

8

21

19

15

2

13


根据上述图表提供的信息,解答下列问题:
(1)喜爱小说的人数占被调查人数的百分比是多少?初中生每天阅读时间的中位数在哪个时间段内?
(2)将写读后感、笔记积累、画圈点读等三种方式称为有记忆阅读.请估计该校现有的2000名初中生中,能进行有记忆阅读的人数约是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC= ,反比例函数y= 的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为(
A. 或2
B. 或2
C. 或2
D. 或2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为半圆O的直径,AC是⊙O的一条弦,D为 的中点,作DE⊥AC,交AB的延长线于点F,连接DA.
(1)求证:EF为半圆O的切线;
(2)若DA=DF=6 ,求阴影区域的面积.(结果保留根号和π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.
(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;
(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数 (k为常数,k≠0)的图象上,且这三点的纵坐标y1 , y2 , y3构成“和谐三组数”,求实数t的值;
(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1 , 0),与抛物线y=ax2+3bx+3c(a≠0)交于B(x2 , y2),C(x3 , y3)两点.
①求证:A,B,C三点的横坐标x1 , x2 , x3构成“和谐三组数”;
②若a>2b>3c,x2=1,求点P( )与原点O的距离OP的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).
(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是
(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.
(1)如图1,若BD=BA,求证:△ABE≌△DBE;
(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M, 求证:①GM=2MC;
②AG2=AFAC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A是抛物线y2=4x上的一点,以点A和点B(2,0)为直径的圆C交直线x=1于M,N两点.直线l与AB平行,且直线l交抛物线于P,Q两点.
(Ⅰ)求线段MN的长;
(Ⅱ)若 =﹣3,且直线PQ与圆C相交所得弦长与|MN|相等,求直线l的方程.

查看答案和解析>>

同步练习册答案