【题目】已知一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0)相交于A和B两点,且A点坐标为(1,3),B点的横坐标为﹣3.
(1)求反比例函数和一次函数的解析式;
(2)根据图象直接写出使得y1>y2时,x的取值范围.
科目:初中数学 来源: 题型:
【题目】在一次交通调查中,100辆汽车经过某地时车内人数如下:
乘车人数 | 1 | 2 | 3 | 4 | 5 |
车数 | x | 30 | y | 16 | 4 |
(1)x+y= .
(2)若每辆车的平均人数为2.5,则中位数为 人.
(3)若每辆车的平均人数为2,则众数为 人.
(4)若x为30,则每辆车的平均人数为 人,中位数为 人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O为ABCD的对角线AC的中点,过点O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.
(1)图中共有几对全等三角形,请把它们都写出来;
(2)求证:∠MAE=∠NCF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y1=2+bx+c与x轴交于点A、B,交y轴于点C(0,﹣2),且抛物线对称轴x=﹣2交x轴于点D,E是抛物线在第3象限内一动点.
(1)求抛物线y1的解析式;
(2)将△OCD沿CD翻折后,O点对称点O′是否在抛物线y1上?请说明理由.
(3)若点E关于直线CD的对称点E′恰好落在x轴上,过E′作x轴的垂线交抛物线y1于点F,①求点F的坐标;②直线CD上是否存在点P,使|PE﹣PF|最大?若存在,试写出|PE﹣PF|最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】要对一块长60m、宽40m的矩形荒地ABCD进行绿化和硬化.
(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的,求P、Q两块绿地周围的硬化路面的宽.
(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O1和O2,且O1到AB,BC,AD的距离与O2到CD,BC,AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(m≠0)的图象在第一象限交于点C,CD垂直于x轴,垂足为D,若OA=OB=OD=1.
(1)求点A、B、D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)在x>0的条件下,根据图象说出反比例函数的值大于一次函数值的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知四边形ABCD是平行四边形,下列结论中正确的有( )
①当AB=BC时,它是菱形; ②当AC⊥BD时,它是菱形;
③当∠ABC=90°时,它是矩形; ④当AC=BD时,它是正方形.
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知2y-3与3x+1成正比例,且x=2时,y=5.
(1)求y与x之间的函数关系式,并指出它是什么函数;
(2)若点(a,2)在这个函数的图象上,求a的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com