精英家教网 > 初中数学 > 题目详情

【题目】如图,已知,梯形中,,点边上,以点为圆心为半径作弧交边于点,射线与射线交于点.

(1)若,求的长;

(2)联结,若,求的长;

(3)线段上是否存在点,使得△与△相似,若相似,求的值,若不相似,请说明理由

【答案】11;(2;(3)存在,FG31

【解析】

1)如图所示,作DOAB,垂足为O,先求出DO的长,然后根据勾股定理可求出DE的长;(2)如图作EQAB,垂足为Q,先根据HL证明RtEQPRtCBP,得到PBPQ,设PBx,则PQxAP5x,根据勾股定理列一元二次方程,求解即可;(3)先根据三角形相似求出∠EAB的大小,然后根据特殊角的三角函数求出ADDEGD的长,再根据相似三角形对应边成比例即可求出FG的长.

1)如图所示,作DOAB,垂足为O.

DC3AB5

AO2

又∵∠A45°,∴DO2

依题意易知,AEAP

根据勾股定理,AE2=(AODE2DO2,即(2DE2413

解得DE=﹣5(舍去)或1

DE1

2)如图作EQAB,垂足为Q.

CPEPEQCB,∴RtEQPRtCBP

PBPQ

PBx,则PQxAP5x

由(1)知CBEQ2

又∵AEAP5x

根据勾股定理有AE2AQ2EQ2,即(5x2=(52x24

解得x

AP(<AD,舍去)或

综上,AP.

3)∵∠F+∠FPB90°,∠EAB2APE180°,∠APE=∠FPB

∴∠EAB2F

若存在三角形相似,则∠DAE=∠F

又∵∠A45°,∴∠EAB30°,

如图所示,延长CD,作AHCD,垂足为H

AHDH2EH2

DE22CE52

∵∠EGF=∠ADE135°,

∴∠EGC45°,

EGCE5

∵△ADE∽△FGE

,即

FG31.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在等边△ABC中,点D是AC边上一点,连接BD,过点A作AE⊥BD于E.

(1)如图1,连接CE并延长CE交AB于点F,若∠CBD=15°,AB=4,求CE的长;

(2)如图2,当点D在线段AC的延长线上时,将线段AE绕点A逆时针旋转60°得到线段AF,连接EF,交BC于G,连接CF,求证:BG=CG.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40 cm,这个三角形的面积S(单位:cm2)x(单位:cm)的变化而变化.

1)请直接写出Sx之间的函数关系式(不要求写出自变量x的取值范围)

2)当x是多少时,这个三角形面积S最大?最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 已知抛物线的对称轴是直线x=3,且与x轴相交于A,B两点(B点在A点右侧)与y轴交于C点 .

(1)求抛物线的解析式和A、B两点的坐标;

(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;

(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,M为正方形ABCD内一点,点NAD边上,且BMN=90°,MN2MB.EMN的中点,点PDE的中点,连接MP并延长到点F,使得PFPM,连接DF.

(1)依题意补全图形;

(2)求证:DFBM

(3)连接AM,用等式表示线段PMAM的数量关系并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:

设销售员的月销售额为x(单位:万元)。销售部规定:当x<16时,为不称职,当 时为基本称职,当 时为称职,当 时为优秀”.根据以上信息,解答下列问题:

(1)补全折线统计图和扇形统计图;

(2)求所有称职优秀的销售员销售额的中位数和众数;

(3)为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励。如果要使得所有称职优秀的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元(结果去整数)?并简述其理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线过点A(,-3) B(3,0),过点A作直线AC//x轴,交y轴与点C.

(1)求抛物线的解析式;

(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D,连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;

(3)抛物线上是否存在点Q,使得?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字012;乙袋中装有3个完全相同的小球,分别标有数字﹣1﹣20;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(xy).

1)用树状图或列表法列举点M所有可能的坐标;

2)求点Mxy)在函数y=-x+1的图象上的概率;

3)在平面直角坐标系xOy中,⊙O的半径是2,求过点Mxy)能作⊙O的切线的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,利用两面靠墙(墙足够长),用总长度37米的篱笆(图中实线部分)围成一个矩形鸡舍ABCD,且中间共留三个1米的小门,设篱笆BC长为x米.

(1)AB=______.(用含x的代数式表示)

(2)若矩形鸡舍ABCD 面积为150平方米,求篱笆BC的长.

(3)矩形鸡舍ABCD面积是否有可能达到210平方米?若有可能,求出相应x的值;若不可能,则说明理由.

查看答案和解析>>

同步练习册答案