精英家教网 > 初中数学 > 题目详情
8.数据3,2,4,2,5,3,2的中位数和众数分别是(  )
A.2,3B.4,2C.3,2D.2,2

分析 根据中位数和众数的定义分别进行解答即可.

解答 解:把这组数据从小到大排列:2,2,2,3,3,4,5,
最中间的数是3,
则这组数据的中位数是3;
2出现了3次,出现的次数最多,则众数是2.
故选:C.

点评 此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

18.下列计算正确的是(  )
A.$\sqrt{2}$×$\sqrt{3}$=$\sqrt{6}$B.x8÷x2=x4C.(2a)3=6a3D.3a3•2a2=6a6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.

已知抛物线y=-$\frac{2\sqrt{3}}{3}$x2-$\frac{4\sqrt{3}}{3}$x+2$\sqrt{3}$与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.
(1)填空:该抛物线的“梦想直线”的解析式为y=-$\frac{2\sqrt{3}}{3}$x+$\frac{2\sqrt{3}}{3}$,点A的坐标为(-2,2$\sqrt{3}$),点B的坐标为(1,0);
(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;
(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图是某几何体的三视图,根据图中的数据,求得该几何体的体积为(  )
A.800π+1200B.160π+1700C.3200π+1200D.800π+3000

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是6.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,由四个正方体组成的几何体的左视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.为加强中小学生安全教育,某校组织了“防溺水”知识竞赛,对表现优异的班级进行奖励,学校购买了若干副乒乓球拍和羽毛球拍.购买2副乒乓球拍和1副羽毛球拍共需116元;购买3副乒乓球拍和2副羽毛球拍共需204元.
(1)求购买1副乒乓球拍和1副羽毛球拍各需多少元;
(2)若学校购买乒乓球拍和羽毛球拍共30副,且支出不超过1480元,则最多能够购买多少副羽毛球拍?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,抛物线l1:y=x2-4的图象与x轴交于A,C两点,抛物线l2与l1关于x轴对称.
(1)直接写出l2所对应的函数表达式;
(2)若点B是抛物线l2上的动点(B与A,C不重合),以AC为对角线,A,B,C三点为顶点的平行四边形的第四个顶点为D,求证:D点在l2上.
(3)当点B位于l1在x轴下方的图象上,平行四边形ABCD的面积是否存在最大值和最小值?若存在,判断它是何种特殊平行四边形,并求出它面积的最值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案