精英家教网 > 初中数学 > 题目详情

【题目】如图,RtACB中,∠C90°,点DAC上,∠CBD=∠A,过AD两点的圆的圆心OAB.

1)判断BD所在直线与⊙O的位置关系,并证明你的结论;

2)若AE4,∠A30°,求图中由BDBE、弧DE围成阴影部分面积.

【答案】1)见解析;(2

【解析】

1)连接ODDE,求出∠ADE=90°=C,推出DEBC,求出∠EDB=CBD=A,根据∠A+OED=90°,求出∠EDB+ODE=90°,根据切线的判定推出即可;

2)分别求出扇形DOEODB的面积,即可求出答案.

解:(1)直线BD与⊙O的位置关系是相切

证明:连接ODDE

∵∠C90°

∴∠CBD+CDB90°

∵∠A=∠CBD

∴∠A+CDB90°

ODOA

∴∠A=∠ADO

∴∠ADO+CDB90°

∴∠ODB180°90°90°

ODBD

OD为半径

BD是⊙O切线

2)解:∵AE是⊙O直径

∴∠ADE90°

AE4,∠A30°

DEAE2,∠AED60°

ODOE

∴△DOE是等边三角形

∴∠ODE60°ODOEDE2

∵∠ODB90°

∴∠EDB30°

∴∠B=∠DEO﹣∠EDB60°30°30°

OB2OD4

由勾股定理得:DB

∴阴影部分的面积SSODBS扇形DOE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:

(Ⅰ)图①中的值为

(Ⅱ)求统计的这组数据的平均数、众数和中位数;

(Ⅲ) 根据样本数据,估计这2500只鸡中,质量为的约有多少只?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两棵树(大树和小树)在一盏路灯下的影子如图所示

(1)确定路灯灯泡的位置(用点P表示)和表示婷婷的影长的线段(用线段AB表示).

(2)若小树高为2m,影长为4m;婷婷高1.5m,影长为4.5米,且婷婷距离小树10米,试求出路灯灯泡的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O00),B01)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,依次下去,则点B7的坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请将宽为3cm、长为ncm的长方形(n为正整数)分割成若干小正方形,要求小正方形的边长是正整数且个数最少.例如,当n5cm时,此长方形可分割成如右图的4个小正方形.

请回答下列问题:

1n16时,可分割成几个小正方形?

2)当长方形被分割成20个小正方形时,求n所有可能的值;

3)一般地,n3时,此长方形可分割成多少个小正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线ly=﹣1.

(1)求抛物线的解析式;

(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.

(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C90°,ACBC,将△ABC绕点A逆时针方向旋转60°到△AB'C'的位置,则图中阴影部分的面积是( )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD的对角线AC,BD交于点F,点E是BD上一点,且∠BAC=∠BDC=∠DAE.

(1)求证:△ABE∽△ACD;

(2)若BC=2,AD=6,DE=3,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】梯形ABCD中,ABDCAD=BC,以AD为直径的⊙OABEO的切线EFBCF,求证:

1EFBC 2BF·BC=BE·AE.

查看答案和解析>>

同步练习册答案