精英家教网 > 初中数学 > 题目详情
已知
x=2
y=1
是二元一次方程组
ax+by=7
ax-by=1
的解,则
a2-b
=
1
1
分析:由于已知二元一次方程组的解,可将其代入方程组中,求出a、b的值,再把它代入要求的式子,即可得出答案.
解答:解:把
x=2
y=1
代入
ax+by=7
ax-by=1

得:
2a+b=7
2a-b=1

解得:
a=2
b=3

a2-b
=
22-3
=1.
故答案为:1.
点评:此题考查了二元一次方程组的解法,根据二元一次方程组的解来求得a、b的值是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

材料一:在平面直角坐标系中,如果已知A,B两点的坐标为(x1,y1)和(x2,y2),设AB=t,那么我们可以通过构造直角三角形用勾股定理得出结论:(x1-x22+(y1-y22=t2
材料二:根据圆的定义,圆是到定点的距离等于定长的所有点的集合(其中定点为圆心,定长为半径).如果把圆放在平面直角坐标系中,我们设圆心坐标为(a,b),半径为r,圆上任意一点的坐标为(x,y),那么我们可以根据材料一的结论得出:(x-a)2+(y-b)2=r2,这个二元二次方程我们把它定义为圆的方程.比如:以点(3,4)为圆心,4为半径的圆,我们可以用方程(x-3)2+(y-4)2=42来表示.事实上,满足这个方程的任意一个坐标(x,y),都在已知圆上.
认真阅读以上两则材料,回答下列问题:
(1)方程(x-7)2+(y-8)2=81表示的是以
(7,8)
(7,8)
为圆心,
9
9
为半径的圆的方程.
(2)方程x2+y2-2x+2y+1=0表示的是以
(1,-1)
(1,-1)
为圆心,
1
1
为半径的圆的方程; 猜想:若方程x2+y2+Dx+Ey+F=0(其中D,E,F为常数)表示的是一个圆的方程,则D,E,F要满足的条件是
D2+E2-4F>0
D2+E2-4F>0

(3)方程x2+y2=4所表示的圆上的所有点到点(3,4)的最小距离是
3
3
(直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•松江区模拟)已知二次函数y=3x2的图象不动,把x轴向上平移2个单位长度,那么在新的坐标系下此抛物线的解析式是
y=3x2-2
y=3x2-2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•江宁区二模)已知
x=-2
y=1
是方程2x+my=-3的解,则m的值是
1
1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•拱墅区二模)已知
x=2
y=
3
是关于x,y的二元一次方程
3
x=y+a
的解,则(a+1)(a-1)=
2
2

查看答案和解析>>

科目:初中数学 来源:2013年广东省中考数学模拟试卷(十五)(解析版) 题型:解答题

材料一:在平面直角坐标系中,如果已知A,B两点的坐标为(x1,y1)和(x2,y2),设AB=t,那么我们可以通过构造直角三角形用勾股定理得出结论:(x1-x22+(y1-y22=t2
材料二:根据圆的定义,圆是到定点的距离等于定长的所有点的集合(其中定点为圆心,定长为半径).如果把圆放在平面直角坐标系中,我们设圆心坐标为(a,b),半径为r,圆上任意一点的坐标为(x,y),那么我们可以根据材料一的结论得出:(x-a)2+(y-b)2=r2,这个二元二次方程我们把它定义为圆的方程.比如:以点(3,4)为圆心,4为半径的圆,我们可以用方程(x-3)2+(y-4)2=42来表示.事实上,满足这个方程的任意一个坐标(x,y),都在已知圆上.
认真阅读以上两则材料,回答下列问题:
(1)方程(x-7)2+(y-8)2=81表示的是以______为圆心,______为半径的圆的方程.
(2)方程x2+y2-2x+2y+1=0表示的是以______为圆心,______为半径的圆的方程; 猜想:若方程x2+y2+Dx+Ey+F=0(其中D,E,F为常数)表示的是一个圆的方程,则D,E,F要满足的条件是______.
(3)方程x2+y2=4所表示的圆上的所有点到点(3,4)的最小距离是______(直接写出结果).

查看答案和解析>>

同步练习册答案