精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y=﹣ x+1的图象与x轴、y轴分别交于点A、B,以线段AB为边在第一象限作等边△ABC.

(1)若点C在反比例函数y= 的图象上,求该反比例函数的解析式;
(2)点P(2 ,m)在第一象限,过点P作x轴的垂线,垂足为D,当△PAD与△OAB相似时,P点是否在(1)中反比例函数图象上?如果在,求出P点坐标;如果不在,请加以说明.

【答案】
(1)

解:在y=﹣ x+1中,令y=0可解得x= ,令x=0可得y=1,

∴A( ,0),B(0,1),

∴tan∠BAO= = =

∴∠BAO=30°,

∵△ABC是等边三角形,

∴∠BAC=60°,

∴∠CAO=90°,

在Rt△BOA中,由勾股定理可得AB=2,

∴AC=2,

∴C( ,2),

∵点C在反比例函数y= 的图象上,

∴k=2× =2

∴反比例函数解析式为y=


(2)

解:∵P(2 ,m)在第一象限,

∴AD=OD﹣OA=2 = ,PD=m,

当△ADP∽△AOB时,则有 = ,即 = ,解得m=1,此时P点坐标为(2 ,1);

当△PDA∽△AOB时,则有 = ,即 = ,解得m=3,此时P点坐标为(2 ,3);

把P(2 ,3)代入y= 可得3≠

∴P(2 ,3)不在反比例函数图象上,

把P(2 ,1)代入反比例函数解析式得1=

∴P(2 ,1)在反比例函数图象上;

综上可知P点坐标为(2 ,1)


【解析】(1)由直线解析式可求得A、B坐标,在Rt△AOB中,利用三角函数定义可求得∠BAO=30°,且可求得AB的长,从而可求得CA⊥OA,则可求得C点坐标,利用待定系数法可求得反比例函数解析式;(2)分△PAD∽△ABO和△PAD∽△BAO两种情况,分别利用相似三角形的性质可求得m的值,可求得P点坐标,代入反比例函数解析式进行验证即可.
【考点精析】本题主要考查了一次函数的性质的相关知识点,需要掌握一般地,一次函数y=kx+b有下列性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算:( 1﹣20140﹣2sin30°+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4 且∠AFG=60°,GE=2BG,则折痕EF的长为(
A.1
B.
C.2
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(π﹣2017)0+6sin60°﹣|5﹣ |﹣( 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将边长为4的菱形ABCD纸片折叠,使点A恰好落在对角线的交点O处,若折痕EF=2 ,则∠A=(
A.120°
B.100°
C.60°
D.30°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).

(1)求二次函数的解析式和直线BD的解析式;
(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;
(3)在抛物线上是否存在异于B、D的点Q,使△BDQ中BD边上的高为2 ?若存在求出点Q的坐标;若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O于点F,连接CF.
(1)判断直线DE与半圆O的位置关系,并说明理由;
(2)①求证:CF=OC; ②若半圆O的半径为12,求阴影部分的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知向量 为实数.
(1)若 ,求t的值;
(2)若t=1,且 ,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某超市地下停车场入口的设计图,请根据图中数据计算CE的长度.(结果保留小数点后两位;参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040)

查看答案和解析>>

同步练习册答案