精英家教网 > 初中数学 > 题目详情

【题目】计算:( 1﹣20140﹣2sin30°+

【答案】解:原式=2﹣1﹣2× +2 =2﹣1﹣1+2 =2
【解析】原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项化为最简二次根式,计算即可得到结果.
【考点精析】掌握零指数幂法则和整数指数幂的运算性质是解答本题的根本,需要知道零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数);aman=am+n(m、n是正整数);(amn=amn(m、n是正整数);(ab)n=anbn(n是正整数);am/an=am-n(a不等于0,m、n为正整数);(a/b)n=an/bn(n为正整数).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;② ;③ac﹣b+1=0;④OAOB=﹣ .其中正确结论的序号是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OABC是平行四边形,对角线OB在轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y= 和y= 的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:
=
②阴影部分面积是 (k1+k2);
③当∠AOC=90°时,|k1|=|k2|;
④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.

其中正确的结论是(把所有正确的结论的序号都填上).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角△ABC中,∠C=90°,∠A、∠B与∠C的对边分别是a、b和c,那么下列关系中,正确的是(
A.cosA=
B.tanA=
C.sinA=
D.cosA=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等腰梯形ABCD中,AD∥BC,AD=1,BC=3,AB=CD=2,点E在BC边上,AE与BD交于点F,∠BAE=∠DBC.
(1)求证:△ABE∽△BCD;
(2)求tan∠DBC的值;
(3)求线段BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小、质地完全相同,小李从布袋里随机取出一个小球,记下数字为x,小张在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点Q的坐标(x,y).
(1)画树状图或列表,写出点Q所有可能的坐标;
(2)求点Q(x,y)在函数y=﹣x+5图象上的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】写出下列命题的已知、求证,并完成证明过程.
(1)命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”).

已知:如图,
求证:
(2)证明命题

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】立定跳远是小刚同学体育中考的选考项目之一.某次体育课上,体育老师记录了小刚的一组立定跳远训练成绩如下表:

成绩(m)

2.35

2.4

2.45

2.5

2.55

次数

1

1

2

5

1

则下列关于这组数据的说法中正确的是(
A.众数是2.45
B.平均数是2.45
C.中位数是2.5
D.方差是0.48

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=﹣ x+1的图象与x轴、y轴分别交于点A、B,以线段AB为边在第一象限作等边△ABC.

(1)若点C在反比例函数y= 的图象上,求该反比例函数的解析式;
(2)点P(2 ,m)在第一象限,过点P作x轴的垂线,垂足为D,当△PAD与△OAB相似时,P点是否在(1)中反比例函数图象上?如果在,求出P点坐标;如果不在,请加以说明.

查看答案和解析>>

同步练习册答案