【题目】如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O的半径为12,弧DE的长度为4π.
(1)求证:DE∥BC;
(2)若AF=CE,求线段BC的长度.
【答案】
(1)
解:证明:连接OD、OE,
∵AD是⊙O的切线,
∴OD⊥AB,∴∠ODA=90°,
又∵弧DE的长度为4π,
∴ ,
∴n=60,
∴△ODE是等边三角形,
∴∠ODE=60°,∴∠EDA=30°,
∴∠B=∠EDA,
∴DE∥BC.
(2)
解:连接FD,
∵DE∥BC,
∴∠DEF=∠C=90°,
∴FD是⊙0的直径,
由(1)得:∠EFD= ∠EOD=30°,FD=24,∴EF= ,
又∵∠EDA=30°,DE=12,
∴AE= ,
又∵AF=CE,∴AE=CF,
∴CA=AE+EF+CF= ,又∵ ,
∴BC=60.
【解析】(1)要证明DE∥BC,可证明∠EDA=∠B,由弧DE的长度为4π,可以求得∠DOE的度数,再根据切线的性质可求得∠EDA的度数,即可证明结论.(2)根据90°的圆周角对的弦是直径,可以求得EF,的长度,借用勾股定理求得AE与CF的长度,即可得到答案.
科目:初中数学 来源: 题型:
【题目】如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上点,连接EF.
(1)图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=3S△EDF , 求AE的长;
(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥CA.
①试判断四边形AEMF的形状,并证明你的结论;
②求EF的长;
(3)如图③,若FE的延长线与BC的延长线交于点N,CN=1,CE= ,求 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】
(1)计算:( )﹣1+(π﹣3.14)0﹣2sin60°﹣ +|1﹣3 |;
(2)先化简,再求值:
(a+1﹣ )÷( ),其中a=2+ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】大明因急事在运行中的自动扶梯上行走去二楼(如图1),图2中线段OA、OB分别表示大明在运行中的自动扶梯上行走去二楼和静止站在运行中的自动扶梯上去二楼时,距自动扶梯起点的距离与时间之间的关系.下面四个图中,虚线OC能大致表示大明在停止运行(即静止)的自动扶梯上行走去二楼时,距自动扶梯起点的距离与时间关系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D、E分别是边AB、AC的中点,连接DE,将△ADE沿AB方向平移到△DBF的位置,点D在BC上,已知△ADE的面积为1,则四边形CEDF的面积是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线AB和抛物线交于点A(﹣4,0),B(0,4),且点B是抛物线的顶点.
(1)求直线AB和抛物线的解析式.
(2)点P是直线上方抛物线上的一点,求当△PAB面积最大时点P的坐标.
(3)M是直线AB上一动点,在平面直角坐标系内是否存在点N,使以O、B、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形A1B1C1O,A2B2C2C1 , A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则An的坐标是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com