分析 (1)先把抛物线解析式配成顶点式,然后根据二次函数性质可确定抛物线的开口方向、对称轴和顶点坐标;
(2)利用描点法画出二次函数图象;
(3)、(4)根据二次函数的性质求解.
解答 解:(1)y=-x2-x+2=-(x+$\frac{1}{2}$)2+$\frac{9}{4}$,
所以二次函数的开口向下,对称轴为直线x=-$\frac{1}{2}$,顶点坐标为(-$\frac{1}{2}$,$\frac{9}{4}$);
(2)如图,![]()
(3)这个函数有最大值,最大值为$\frac{9}{4}$;
(4)当x>-$\frac{1}{2}$时,y随x的增大而减小.
点评 本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-$\frac{b}{2a}$,$\frac{4ac-{b}^{2}}{4a}$),对称轴直线x=-$\frac{b}{2a}$,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-$\frac{b}{2a}$时,y随x的增大而减小;x>-$\frac{b}{2a}$时,y随x的增大而增大;x=-$\frac{b}{2a}$时,y取得最小值$\frac{4ac-{b}^{2}}{4a}$,即顶点是抛物线的最低点.当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-$\frac{b}{2a}$时,y随x的增大而增大;x>-b2a时,y随x的增大而减小;x=-$\frac{b}{2a}$时,y取得最大值$\frac{4ac-{b}^{2}}{4a}$,即顶点是抛物线的最高点.
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | 4 | C. | 5 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 选项 | 方式 | 百分比 |
| A | 唱歌 | 35% |
| B | 舞蹈 | a |
| C | 绘画 | 25% |
| D | 演讲 | 10% |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com