精英家教网 > 初中数学 > 题目详情
20.如图,△CDE中,∠CDE=135°,CB⊥DE于B,EA⊥CD于A,求证:CE=$\sqrt{2}$AB.

分析 取CE的中点F,连接AF、BF,根据直角三角形斜边上的中线等于斜边的一半可得AF=EF=BF=CF,根据三角形的内角和等于180°求出∠ACE+∠BEC=45°,然后求出∠AEC+∠BCE=135°,再根据等腰三角形两底角相等求出∠BFC+∠AFE=90°,然后求出∠AFB=90°,从而判断出△ABF是等腰直角三角形,然后根据等腰直角三角形的直角边等于斜边的$\frac{\sqrt{2}}{2}$可得AF=$\frac{\sqrt{2}}{2}$AB,然后证明即可.

解答 证明:如图,取CE的中点F,连接AF、BF,
∵CB⊥DE,EA⊥CD,
∴AF=EF=BF=CF=$\frac{1}{2}$CE,
在△CDE中,∵∠CDE=135°,
∴∠ACE+∠BEC=180°-135°=45°,
∴∠AEC+∠BCE=(90°-∠ACE)+(90°-∠BEC)=180°-45°=135°,
∴∠BFC+∠AFE=(180°-2∠BCE)+(180°-2∠AEC)=360°-2(∠AEC+∠BCE)=360°-2×135°=90°,
∴∠AFB=180°-(∠BCF+∠AFE)=180°-90°=90°,
∴△ABF是等腰直角三角形,
∴AF=$\frac{\sqrt{2}}{2}$AB,
∴CE=2AF=2×$\frac{\sqrt{2}}{2}$AB=$\sqrt{2}$AB,
即CE=$\sqrt{2}$AB.

点评 本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形两底角相等的性质,三角形的内角和定理,等腰直角三角形的判定与性质,熟记各性质是解题的关键,作出图形更形象直观.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.运用零指数幂及负整数指数幂计算:(-$\frac{4}{3}$)-4÷(-$\frac{4}{3}$)-3÷(-$\frac{4}{3}$)0

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.设方程(x-a)(x-b)-x=0的两根是c、d,则方程(x-c)(x-d)+x=0的根是x=a,x=b.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.先阅读材料,然后解方程组:
材料:解方程组:
$\left\{\begin{array}{l}{\frac{x+1}{3}=2y①}\\{2(x+1)-y=11②}\end{array}\right.$
解:由①得x+1=6y③
把③代入②得×6y-y=11,得y=1
把y=1代入③,得x+1=6,∴x=5
∴方程组的解为$\left\{\begin{array}{l}{x=5}\\{y=1}\end{array}\right.$.
上述方法为“整体代入法”,请用上述方法解下列方程组:
$\left\{\begin{array}{l}{3x+2y=5x+2}\\{2(3x+2y)=11x+7}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.计算下列各式的值;
(1)|$\sqrt{2}-\sqrt{3}$|-|$\sqrt{3}-\sqrt{2}$|;
(2)$\sqrt{(2-\sqrt{5})^{2}}$+|2$\sqrt{5}$-8|

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.期末考试结束后,初三年级的数学老师需要批改330份试卷,为了尽快让学生获悉考试成绩,实际批改时,每小时的工作效率比原计划提高10%,结果提前1小时完成这一任务,问实际每小时批改多少份试卷?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.用加减法解下列方程组:
(1)$\left\{\begin{array}{l}{3m-2n=5}\\{4m+2n=9}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{9x+2y=20}\\{3x+4y=10}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.先化简,再求值:(x+$\frac{2xy+{y}^{2}}{x}$)÷$\frac{{x}^{2}-{y}^{2}}{{x}^{2}-xy}$,其中x=-2015,y=2014.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知如图,在菱形ABCD中,∠B=60°,点E、F分别在AB、AD上,且BE=AF.求证:△ECF是等边三角形.

查看答案和解析>>

同步练习册答案