分析 (1)根据题意先求出∠BAC=30°,再根据含30度的直角三角形三边的关系得到AB=2BC=4,再根据旋转的性质得A′B′=AB=4,B′C=BC=2,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,得出△CAA′为等腰三角形,从而得出∠CAA′=∠A′=30°,再利用三角形外角性质计算出∠B′CA=30°,可得B′A=B′C=2,然后根据AA′=AB′+A′B′进行计算即可得出答案;
(2)延长A′C交AB于D,根据三角函数可求A′C,BD,再根据三角形面积公式即可求解.
解答 解:(1)∵∠ACB=90°,∠B=60°,
∴∠BAC=30°,
∵BC=2
∴AB=4,
∵△ABC绕点C顺时针旋转得到△A′B′C′,
∴A′B′=AB=4,B′C=BC=2,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,
∴△CAA′为等腰三角形,
∴∠CAA′=∠A′=30°,
∵A、B′、A′在同一条直线上,
∴∠A′B′C=∠B′AC+∠B′CA,
∴∠B′CA=60°-30°=30°,
∴B′A=B′C=2,
∴AA′=AB′+A′B′=4+2=6.
(2)延长A′C交AB于D,
在Rt△A′CB′中,A′C=2$\sqrt{3}$,
在Rt△BCD中,CD=$\sqrt{3}$,
则△A′BC的面积为2$\sqrt{3}$×$\sqrt{3}$÷2=3.
点评 本题考查了旋转的性质:掌握对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等是本题的关键.也同时考查了含30度的直角三角形三边的关系.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 6 | B. | 0 | C. | -6 | D. | -2 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1条 | B. | 2条 | C. | 3条 | D. | 4条 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com