精英家教网 > 初中数学 > 题目详情
9.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=$\frac{k}{x}$在第一象限的图象经过点B,若OA2-AB2=8,则k的值为4.

分析 设B点坐标为(a,b),根据等腰直角三角形的性质得OA=$\sqrt{2}$AC,AB=$\sqrt{2}$AD,OC=AC,AD=BD,则OA2-AB2=8变形为AC2-AD2=4,利用平方差公式得到(AC+AD)(AC-AD)=4,所以(OC+BD)•CD=4,则有a•b=4,根据反比例函数图象上点的坐标特征易得k=4.

解答 解:设B点坐标为(a,b),
∵△OAC和△BAD都是等腰直角三角形,
∴OA=$\sqrt{2}$AC,AB=$\sqrt{2}$AD,OC=AC,AD=BD,
∵OA2-AB2=8,
∴2AC2-2AD2=8,即AC2-AD2=4,
∴(AC+AD)(AC-AD)=4,
∴(OC+BD)•CD=4,
∴a•b=4,
∴k=4.
故答案为:4.

点评 本题考查了反比例函数图象上点的坐标特征:反比例函数y=$\frac{k}{x}$(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图所示,每一个小方格都是边长为1个单位的正方形.△ABC的三个顶点都在格点上,以点O为坐标原点建立平面直角坐标系.
(1)画出△ABC先向左平移3个单位,再向下平移1个单位的△A1B1C1,并写出点B1的坐标(-2,1);
(2)画出将.△ABC绕点O顺时针旋转90°后的△A2B2C2,并求出点A旋转到A2所经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.设x2+mx+81是一个完全平方式,则m=±18.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.若多项式a2+4a+k2是完全平方式,则常数k的值为(  )
A.2B.4C.±4D.±2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P(a,2).
(1)求出不等式2x≤kx+3的解集;
(2)求出△OAP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,在矩形ABCD中,AB=10,BC=5,若点M、N分别是线段AC、AB上的两个动点,则BM+MN的最小值为8.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,在6×6的正方形网格中,连结两格点A,B,线段AB与网格线的交点为M、N,则AM:MN:NB为(  )
A.3:5:4B.1:3:2C.1:4:2D.3:6:5

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,AB是⊙O的直径,AB=2,点C是半圆弧AB上的一点,且∠CAB=40°,点D是BC的中点,点P是直径AB上的动点,则线段PC+PD的最小值是$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.用加减法解二元一次方程$\left\{\begin{array}{l}{3x+5y=19}\\{8x-3y=62}\end{array}\right.$
思考:(1)用加减法解二元一次方程组,第一个加数的系数应具备什么特点?
(2)3和8的公倍数是24,5和3的最小公倍数是15,因此可把方程变形,使未知数y的系数互为相反数.
(3)①×3,得9x+15y=57;
②×5,得40x-15y=310.
(4)所得的两个方程怎样可消去一个未知数,得到一个一元一次方程?

查看答案和解析>>

同步练习册答案