分析 (1)根据角平分线的定义可得∠FBC=$\frac{1}{2}$∠ABC,∠FCB=$\frac{1}{2}$∠ACB,再根据三角形内角和定理求出即可;
(2)根据三角形内角和定理求出∠ABC+∠ACB,根据角平分线定义求出∠FBC+∠FCB,根据三角形内角和定理求出即可;
(3)根据三角形内角和定理求出∠FBC+∠FCB,求出∠ABC+∠ACB,根据三角形内角和定理求出即可;
(4)根据角平分线的定义可得∠FBC=$\frac{1}{2}$∠ABC,∠FCB=$\frac{1}{2}$∠ACB,然后表示出∠FBC+∠FCB,再根据三角形的内角和等于180°列式整理即可得证.
解答 解:(1)∵∠ABC、∠ACB的平分线相交于点F,∠ABC=40°,∠ACB=50°,
∴∠FBC=$\frac{1}{2}$∠ABC=20°,∠FCB=$\frac{1}{2}$∠ACB=25°,
∴∠BFC=180°-(∠FBC+∠FCB)=135°;
(2)∵∠A=70°,
∴∠ABC+∠ACB=180°-∠A=110°,
∵∠ABC、∠ACB的平分线相交于点F,
∴∠FBC=$\frac{1}{2}$∠ABC,∠FCB=$\frac{1}{2}$∠ACB,
∴∠FBC+∠FCB=55°,
∴∠NFC=180°-(∠FBC+∠FCB)=62.5°;
(3)∵∠BFC=120°,
∴∠FBC+∠FCB=180°-∠BFC=60°,
∵∠FBC=$\frac{1}{2}$∠ABC,∠FCB=$\frac{1}{2}$∠ACB,
∴∠ABC+∠ACB=120°,
∴∠A=180°-(∠ABC+∠ACB)=60°;
(4)∠BFC=90°+$\frac{1}{2}∠$A,
理由是:∵∠ABC与∠ACB的平分线相交于点F,
∴∠FBC=$\frac{1}{2}$∠ABC,∠FCB=$\frac{1}{2}$∠ACB,
∴∠FBC+∠FCB=$\frac{1}{2}$(∠ABC+∠ACB),
在△FBC中,∠BFC=180°-(∠FBC+∠FCB)
=180°-$\frac{1}{2}$(∠ABC+∠ACB)
=180°-$\frac{1}{2}$(180°-∠A)
=90°+$\frac{1}{2}$∠A.
点评 本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com