精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线轴交于两点,交轴于点

求抛物线的解析式;

是第二象限内一点,过点轴交抛物线于点,过点轴于点,连接,若.求的值并直接写出的取值范围(利用图完成你的探究).

如图,点是线段上一动点(不包括点),轴交抛物线于点交直线于点,设点的横坐标为,求的周长.

【答案】 的周长为

【解析】

(1)将点A的坐标代入抛物线解析式即可求得c的值,则可得抛物线解析式;

(2)过点CCH⊥EF于点H,易证△EHC∽△FGC,再根据相似三角形的性质可得n的值;

(3)首先表示出点P的坐标,再根据△OPM∽△QPB,然后由对应边的比值相等得出PQBQ的长,从而可得△PBQ的周长.

代入

抛物线解析式为

如图,过点于点

轴于点

由题意可知

轴交抛物线于点

其中

的周长为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】△ABC中,∠C=90°DE垂直平分斜边AB,分别交ABBCDE.若∠CAB=∠B+30°CE=2cm

:1∠AEB 度数.

2BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点在线段上运动(不与重合),连接交线段.

1)当时,____________,点运动时,逐渐变______(填“大”或“小”);

2)当等于多少时,全等?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A、B分别在x轴、y轴上,AB=12,∠OAB=30°,经过A、B的直线l以每秒1个单位的速度向下作匀速平移运动,与此同时,点P从点B出发,在直线l上以每秒1个单位的速度沿直线l向右下方向作匀速运动.设它们运动的时间为t秒.


(1)直接写出A、B点坐标是A点 ,B点
(2)用含t的代数式求出表示点P的坐标;
(3)过O作OC⊥l于C,过C作CD⊥x轴于D,问:t为何值时,以P为圆心、1为半径的圆与直线OC相切?并写出此时⊙P与直线CD的位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知中,厘米,厘米,点的中点.

1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.

①若点Q的运动速度与点P的运动速度相等,经过1秒后,是否全等,请说明理由;

②若点Q的运动速度与点P的运动速度不相等, 是否可能全等?若能,求出全等时点Q的运动速度和时间;若不能,请说明理由.

2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠A90°,ACABCD平分∠ACBDEBC于点E,若BC15 cm,则△DEB的周长为(

A.14 cmB.15 cm

C.16 cmD.17 cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以O为原点的直角坐标系中,A点的坐标为(0,1),直线x=1交x轴于点B。P为线段AB上一动点,作直线PC⊥PO,交直线x=1于点C。过P点作直线MN平行于x轴,交y轴于点M,交直线x=1于点N。

(1)当点C在第一象限时,求证:△OPM≌△PCN;

(2)当点C在第一象限时,设AP长为m,四边形POBC的面积为S,请求出S与m间的函数关系式,并写出自变量m的取值范围;

(3)当点P在线段AB上移动时,点C也随之在直线x=1上移动,△PBC是否可能成为等腰三角形?如果可能,求出所有能使△PBC成为等腰直角三角形的点P的坐标;如果不可能,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+cyx的部分对应值如下表:

x

-1

0

1

3

y

-3

1

3

1

下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值yx的增大而增大;④方程ax2+bx+c=0有一个根大于4,其中正确的结论有(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点M为直线AB上一动点, 都是等边三角形,连接BN

求证:

分别写出点M在如图2和图3所示位置时,线段ABBMBN三者之间的数量关系不需证明

如图4,当时,证明:

查看答案和解析>>

同步练习册答案