精英家教网 > 初中数学 > 题目详情

【题目】如图,AB为⊙O的直径,直线CD切⊙O于点M,BE⊥CD于点E.
(1)求证:∠BME=∠MAB;
(2)求证:BM2=BEAB;
(3)若BE= ,sin∠BAM= ,求线段AM的长.

【答案】
(1)证明:如图,连接OM,

∵直线CD切⊙O于点M,

∴∠OMD=90°,

∴∠BME+∠OMB=90°,

∵AB为⊙O的直径,

∴∠AMB=90°.

∴∠AMO+∠OMB=90°,

∴∠BME=∠AMO,

∵OA=OM,

∴∠MAB=∠AMO,

∴∠BME=∠MAB


(2)证明:由(1)有,∠BME=∠MAB,

∵BE⊥CD,

∴∠BEM=∠AMB=90°,

∴△BME∽△BAM,

∴BM2=BEAB


(3)解:由(1)有,∠BME=∠MAB,

∵sin∠BAM=

∴sin∠BME=

在Rt△BEM中,BE=

∴sin∠BME= =

∴BM=6,

在Rt△ABM中,sin∠BAM=

∴sin∠BAM= =

∴AB= BM=10,

根据勾股定理得,AM=8


【解析】(1)由切线的性质得出∠BME+∠OMB=90°,再由直径得出∠AMB=90°,利用同角的余角相等判断出结论;(2)由(1)得出的结论和直角,判断出△BME∽△BAM,即可得出结论,(3)先在Rt△BEM中,用三角函数求出BM,再在Rt△ABM中,用三角函数和勾股定理计算即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(本题6分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(2,2),B(4,1),C(4,4).

(1)作出 ABC关于原点O成中心对称的 A1B1C1.
(2)作出点A关于x轴的对称点A'.若把点A'向右平移a个单位长度后落在 A1B1C1的内部(不包括顶点和边界),求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把下列各数填入相应的括号内:

-11,,3, ,0,,-12.101001…,-π,0.4.

有理数{ …};

无理数{ ……};

正实数{ …};

负实数{ ……}.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】乘法公式的探究及应用.

(1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式);

(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);

(3)比较图1、图2阴影部分的面积,可以得到公式

(4)运用你所得到的公式,计算下列各题:

①10.2×9.8,②(2m+n﹣p)(2m﹣n+p).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=-2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC

(1)求点A、C的坐标;

(2)将ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图);

(3)在坐标平面内,是否存在点P(除点B外),使得APC与ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某轮船由西向东航行,在 A 处测得小岛 P 的方位是北偏东 75°,又继续航行 8 海里后,在 B 处测得小岛 P 的方位是北偏东 60°,则此时ABP 的面积为______平方海里.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校数学课题学习小组在“测量教学楼高度”的活动中,设计了以下两种方案:

课题

测量教学楼高度

方案

图示

测得数据

CD=6.9m,∠ACG=22°,∠BCG=13°,

EF=10m,∠AEB=32°,∠AFB=43°

参考数据

sin22°≈0.37,cos22°≈0.93,
tan22°≈0.40
sin13°≈0.22,cos13°≈0.97
tan13°≈0.23

sin32°≈0.53,cos32°≈0.85,tan32°≈0.62
sin43°≈0.68,cos43°≈0.73,tan43°≈0.93

请你选择其中的一种方法,求教学楼的高度(结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,在平面直角坐标系中,

(1) 作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标:

A1 ,B1 ,C1 .

(2) 直接写出△ABC的面积为 .

(3) x轴上画点P,使△PAC的周长最小. (不写作法,保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.

(1)求该二次函数的解析式及点M的坐标;
(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;
(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).

查看答案和解析>>

同步练习册答案