【题目】阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法,配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2,例如二次三项式x2-2x+9的配方过程如下:x2-2x+9=x2-2x+1-1+9=(x-1)2+8.
请根据阅读材料解决下列问题:
(1)比照上面的例子,将下面的两个二次三项式分别配方:
①x2-4x+1=______;
②3x2+6x-9=3(x2+2x)-9=______;
(2)已知x2+y2-6x+10y+34=0,求3x-2y的值;
(3)已知a2+b2+c2+ab-3b+2c+4=0,求a+b+c的值.
【答案】(1)①(x-2)2-3;②3(x+1)2-12;(2)19;(3)0
【解析】
(1)由题中所给的已知材料可得x2-4x+1和a2+ab+b2的配方后的形式;
(2)通过配方后,求得x,y的值,再代入代数式求值;
(3)通过配方后,求得a,b,c的值,再代入代数式求值.
解:(1)①x2-4x+1=(x-2)2-3;
②3x2+6x-9=3(x2+2x)-9=3(x+1)2-12;
故答案为:(x-2)2-3,3(x+1)2-12;
(2)∵x2+y2-6x+10y+34=0,
∴x2-6x+9+y2+10y+25=0,
∴(x-3)2+(y+5)2=0,
∴x=3,y=-5,
∴3x-2y=3×3-2×(-5)=19;
(3)a2+b2+c2+ab-3b+2c+4=0
∴a2+ba+b2+b2-3b+3+c2+2c+1=0,
∴(a+b)2+(c+1)2=0,
∴a=-b,b=2,c=-1,
∴a=-1,
∴a+b+c=-1+2+(-1)=0.
科目:初中数学 来源: 题型:
【题目】如图1,点O在直线AB上,∠AOC=30°,将一直角三角板的直角边OM与OA重合,ON在∠COB内部.现将三角板绕O沿顺时针方向以每秒2°的速度旋转,当ON与OB重合时停止转动.设运动时间为t(s).
(1)若直角边ON将∠COB分成∠CON:∠BON=3:2,求t的值;
(2)如图2,OG为三角板MON内部的射线,在旋转的过程中,OG始终平分∠MOB,请问∠AOM与∠NOG是否存在一定的数量关系?若存在,求出改数量关系;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为4的顶点开始,第2018次“移位”后,那么他所处的顶点的编号是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足,过C作轴于B,
(1)求a,b的值;
(2)在y轴上是否存在点P,使得△ABC和△OCP的面积相等,若存在,求出点P坐标,若不存在,试说明理由.
(3)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,图3,
①求:∠CAB+∠ODB的度数;
②求:∠AED的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某企业对每个员工在当月生产某种产品的件数统计如下:设产品件数为x(单位:件),企业规定:当x<15时为不称职;当15≤x<20时为基本称职;当20≤x<25为称职;当x≥25时为优秀.解答下列问题
(1)试求出优秀员工人数所占百分比;
(2)计算所有优秀和称职的员工中月产品件数的中位数和众数;
(3)为了调动员工的工作积极性,企业决定制定月产品件数奖励标准,凡达到或超过这个标准的员工将受到奖励.如果要使得所有优秀和称职的员工中至少有一半能获奖,你认为这个奖励标准应定为多少件合适?简述其理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AD平分∠BAC,DE∥AC交AB于E,DF∥AB交AC于F,若AF=6,则四边形AEDF的周长是( )
A. 24 B. 28 C. 32 D. 36
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面文字,根据所给信息解答下面问题:把几个数用大括号括起来,中间用逗号隔开,如:{3,4};{﹣3,6,8,18},其中大括号内的数称其为集合的元素.如果一个集合满足:只要其中有一个元素a,使得﹣2a+4也是这个集合的元素,这样的集合称为条件集合.例如;{3,﹣2},因为﹣2×3+4=﹣2,﹣2恰好是这个集合的元素所以吕{3,﹣2}是条件集合:例如;(﹣2,9,8,},因为﹣2×(﹣2)+4=8,8恰好是这个集合的元素,所以{﹣2,9,8,}是条件集合.
(1)集合{﹣4,12}是否是条件集合?
(2)集合{,﹣,}是否是条件集合?
(3)若集合{8,n}和{m}都是条件集合.求m、n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠ABC=∠DCB,添加一个条件使△ABC≌△DCB,下列添加的条件不能使△ABC≌△DCB的是( )
A. ∠A=∠D B. AB=DC C. AC=DB D. OB=OC
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com