【题目】在平面直角坐标系xOy中,抛物线y=mx2﹣6mx+9m+1(m≠0).
(1)求抛物线的顶点坐标;
(2)若抛物线与x轴的两个交点分别为A和B点(点A在点B的左侧),且AB=4,求m的值.
(3)已知四个点C(2,2)、D(2,0)、E(5,﹣2)、F(5,6),若抛物线与线段CD和线段EF都没有公共点,请直接写出m的取值范围.
【答案】(1)顶点坐标为(3,1);(2)m=﹣;(3)m<﹣1或m>.
【解析】
(1)利用配方法得y═m(x﹣3)2+1,由此即可得出顶点坐标;
(2)根据抛物线的对称轴以及AB=4,即可得到A、B两点的坐标,代入抛物线即可求出m的值;
(3)结合图象即可得出当抛物线与线段CD和线段EF都没有公共点时m的取值范围.
(1)∵y=mx2﹣6mx+9m+1=m(x﹣3)2+1,
∴抛物线的顶点坐标为(3,1);
(2)∵对称轴为直线x=3,且AB=4,
∴A(1,0),B(5,0),
将点A的坐标代入抛物线,可得:m=﹣;
(3)如图:
①当m>0时满足,解得:m>;
②当m<时满足,解得:m<﹣1;
综上,m<﹣1或m>.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知点A(0,3m),P(0,2m),Q(0,m)(m≠0).将点A绕点P顺时针旋转90°,得到点M,将点O绕点Q顺时针旋转90°,得到点N,连接MN,称线段MN为线段AO的伴随线段.
(1)如图1,若m=1,则点M,N的坐标分别为 , ;
(2)对于任意的m,求点M,N的坐标(用含m的式子表示);
(3)已知点B(,t),C(,t),以线段BC为直径,在直线BC的上方作半圆,若半圆与线段BC围成的区域内(包括边界)至少存在一条线段AO的伴随线段MN,直接写出t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,平行四边形 ABCD的两条对角线相交于点O, E是BO的中点.过B点作AC的平行线,交CE的延长线于点F,连接BF.
(1)求证:FB=AO;
(2)当平行四边形 ABCD满足什么条件时,四边形AFBO是菱形?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有A、B两个不透明袋子,分别装有3个除颜色外完全相同的小球。其中,A袋装有2个白球,1个红球;B袋装有2个红球,1个白球。
(1)将A袋摇匀,然后从A袋中随机取出一个小球,求摸出小球是白色的概率;
(2)小华和小林商定了一个游戏规则:从摇匀后的A,B两袋中随机摸出一个小球,摸出的这两个小球,若颜色相同,则小林获胜;若颜色不同,则小华获胜。请用列表法或画出树状图的方法说明这个游戏规则对双方是否公平。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于、两点,对称轴与轴交于点,点,点,点是平面内一动点,且满足,是线段的中点,连结.则线段的最大值是( ).
A.3B.C.D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车从城出发匀速行驶至城.在整个行驶过程中,甲、乙两车离城的距离(千米)与甲车行驶的时间(小时)之间的函数关系如图所示.则下列结论:
①两城相距千米;
②乙车比甲车晚出发小时,却早到小时;
③乙车出发后小时追上甲车;
④当甲、乙两车相距千米时,
其中正确的结论有( )
A.个B.个C.个D.个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制成如下统计图表(单位:cm):
A | x<155 |
B | 155≤x<160 |
C | 160≤x<165 |
D | 165≤x<170 |
E | x≥170 |
根据图表提供的信息,样本中,身高在160≤x<170之间的女生人数为( )
A. 8 B. 6 C. 14 D. 16
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线(为常数,),其对称轴是,与轴的一个交点在,之间.有下列结论:①;②;③若此抛物线过和两点,则,其中,正确结论的个数为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线分别与x轴,y轴交于点,点C是第一象限内的一点,且,抛物线经过两点,与x轴的另一交点为D.
(1)求此抛物线的解析式;
(2)判断直线与的位置关系,并证明你的结论;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com