精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,△ABC中,AB=AC,BD、CE分别是AC、AB边上的高,连接DE.
求证:(1)△ABD≌△ACE;
(2)四边形BCDE是等腰梯形.
分析:(1)BD、CE分别是AC、AB边上的高,可得∠ADB=∠AEC=90°,然后即可证明△ABD≌△ACE;
(2)由△ABD≌△ACE得AD=AE,则∠ADE=∠AED,可得∠ADE=
180°-∠A
2
.再利用等腰三角形的性质和三角形内角和定理求得∠ACB=
180°-∠A
2
.然后可得DE∥BC.再利用AB-AE=AC-AD可得BE=CD,然后即可证明结论.
解答:证明:(1)∵BD、CE分别是AC、AB边上的高
又∵∠A=∠A,AB=AC,
∴△ABD≌△ACE;

(2)由△ABD≌△ACE得AD=AE,则∠ADE=∠AED,
故∠ADE=
180°-∠A
2
. 
∵AB=AC得∠ABC=∠ACB,故∠ACB=
180°-∠A
2

∴∠ADE=∠ACB.
∴DE∥BC.
又∵AB-AE=AC-AD即BE=CD,
∴四边形BCDE是等腰梯形.
点评:此题主要考查全等三角形的判定与性质和等腰三角形的性质,梯形的判定等知识点,难易程度适中.属于中档题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案