【题目】证明:两条平行直线被第三条直线所截,一对同旁内角的平分线互相垂直.
已知:
求证: .
证明:
【答案】见解析.
【解析】试题分析:根据题意画出图形,写出已知与求证,证明过程为:由AB与CD平行,利用两直线平行同旁内角互补得到∠BEF+∠EFD=180°,再由EG与FG为角平分线,利用角平分线定义及等量代换得到∠GEF+∠EFG=90°,根据三角形的内角和定理即可得∠EGF=90°,结论得证.
试题解析:
已知:直线AB∥CD,直接EF分别交AB,CD于点E,F,∠BEF,∠EFD的平分线交于G点.
求证:EG⊥FG
证明:∵AB∥CD,
∴∠BEF+∠EFD=180°,
∵EG平分∠BEF,FG平分∠EFD,
∴∠GEF=∠BEF,∠EFG=∠EFD,
∴∠GEF+∠EFG=∠BEF+∠EFD=×180°=90°,
∴∠EGF=180°-(∠GEF+∠EFG)=90°,
∴EG⊥FG
科目:初中数学 来源: 题型:
【题目】某超市老板到批发中心选购甲、乙两种品牌的水杯。甲进货单价为3元、乙进货单价为4元;考虑各种因素,预计购进乙品牌水杯的数量y(个)与甲品牌水杯的数量x(个)之间的函数关系如图所示.
(1)根据图象,求y与x之间的函数关系式;
(2)若该超市每销售1个甲水杯可获利0.5元,每销售1个乙水杯可获利1元。请写出获利W(元)与x(个)的函数关系式;
(3)在(2)的条件下,超市老板决定用不超过700元购进甲、乙两种品牌的水杯,且这两种品牌的水杯全部售出后获利不低于149元,问该超市有几种进货方案?哪种方案能使获利最大?最大获利为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,
(1)求证:四边形ADCE为矩形;
(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,则的值是_____________.
【答案】-2
【解析】试题解析:∵
∴
∴
∴
【题型】解答题
【结束】
21
【题目】计算下列各题:
(1)(﹣2a)6﹣(﹣3a3)2+[﹣(2a)2]3
(2)(16x4﹣8x3+4x2)÷(﹣2x)2
(3)(2x﹣y)2﹣4(x﹣y)(x+2y)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com